From c50eee19c447d3f2c182dc3a22f2b01a053dca41 Mon Sep 17 00:00:00 2001 From: "Paul E. Murphy" Date: Tue, 28 Jun 2016 08:49:23 -0500 Subject: Convert _Complex sine functions to generated code Refactor s_c{,a}sin{,h}{f,,l} into a single templated macro. --- math/Makefile | 13 +-- math/k_casinh.c | 210 --------------------------------------------- math/k_casinh_template.c | 181 +++++++++++++++++++-------------------- math/k_casinhf.c | 212 --------------------------------------------- math/k_casinhl.c | 219 ----------------------------------------------- math/s_casin.c | 66 -------------- math/s_casin_template.c | 31 +++---- math/s_casinf.c | 64 -------------- math/s_casinh.c | 73 ---------------- math/s_casinh_template.c | 34 ++++---- math/s_casinhf.c | 71 --------------- math/s_casinhl.c | 69 --------------- math/s_casinl.c | 62 -------------- math/s_csin.c | 171 ------------------------------------ math/s_csin_template.c | 79 ++++++++--------- math/s_csinf.c | 169 ------------------------------------ math/s_csinh.c | 166 ----------------------------------- math/s_csinh_template.c | 79 ++++++++--------- math/s_csinhf.c | 164 ----------------------------------- math/s_csinhl.c | 162 ----------------------------------- math/s_csinl.c | 167 ------------------------------------ 21 files changed, 209 insertions(+), 2253 deletions(-) delete mode 100644 math/k_casinh.c delete mode 100644 math/k_casinhf.c delete mode 100644 math/k_casinhl.c delete mode 100644 math/s_casin.c delete mode 100644 math/s_casinf.c delete mode 100644 math/s_casinh.c delete mode 100644 math/s_casinhf.c delete mode 100644 math/s_casinhl.c delete mode 100644 math/s_casinl.c delete mode 100644 math/s_csin.c delete mode 100644 math/s_csinf.c delete mode 100644 math/s_csinh.c delete mode 100644 math/s_csinhf.c delete mode 100644 math/s_csinhl.c delete mode 100644 math/s_csinl.c (limited to 'math') diff --git a/math/Makefile b/math/Makefile index e02b430e04..8873a9eeab 100644 --- a/math/Makefile +++ b/math/Makefile @@ -45,8 +45,9 @@ libm-support = s_lib_version s_matherr s_signgam \ # Wrappers for these functions generated per type using a file named # _template.c and the appropriate math-type-macros-.h. -gen-libm-calls = cargF conjF cimagF crealF cabsF s_cacosF \ - s_cacoshF s_ccosF s_ccoshF +gen-libm-calls = cargF conjF cimagF crealF cabsF s_cacosF \ + s_cacoshF s_ccosF s_ccoshF s_casinF s_csinF s_casinhF \ + k_casinhF s_csinhF libm-calls = \ e_acosF e_acoshF e_asinF e_atan2F e_atanhF e_coshF e_expF e_fmodF \ @@ -64,11 +65,11 @@ libm-calls = \ w_ilogbF \ s_fpclassifyF s_fmaxF s_fminF s_fdimF s_nanF s_truncF \ s_remquoF e_log2F e_exp2F s_roundF s_nearbyintF s_sincosF \ - s_cexpF s_csinhF s_clogF \ - s_catanF s_casinF s_csinF s_ctanF s_ctanhF \ - s_casinhF s_catanhF s_csqrtF s_cpowF s_cprojF s_clog10F \ + s_cexpF s_clogF \ + s_catanF s_ctanF s_ctanhF \ + s_catanhF s_csqrtF s_cpowF s_cprojF s_clog10F \ s_fmaF s_lrintF s_llrintF s_lroundF s_llroundF e_exp10F w_log2F \ - s_issignalingF $(calls:s_%=m_%) x2y2m1F k_casinhF \ + s_issignalingF $(calls:s_%=m_%) x2y2m1F \ gamma_productF lgamma_negF lgamma_productF \ s_nextupF s_nextdownF $(gen-libm-calls) diff --git a/math/k_casinh.c b/math/k_casinh.c deleted file mode 100644 index 354dde1f3e..0000000000 --- a/math/k_casinh.c +++ /dev/null @@ -1,210 +0,0 @@ -/* Return arc hyperbole sine for double value, with the imaginary part - of the result possibly adjusted for use in computing other - functions. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include - -/* Return the complex inverse hyperbolic sine of finite nonzero Z, - with the imaginary part of the result subtracted from pi/2 if ADJ - is nonzero. */ - -__complex__ double -__kernel_casinh (__complex__ double x, int adj) -{ - __complex__ double res; - double rx, ix; - __complex__ double y; - - /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabs (__real__ x); - ix = fabs (__imag__ x); - - if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON) - { - /* For large x in the first quadrant, x + csqrt (1 + x * x) - is sufficiently close to 2 * x to make no significant - difference to the result; avoid possible overflow from - the squaring and addition. */ - __real__ y = rx; - __imag__ y = ix; - - if (adj) - { - double t = __real__ y; - __real__ y = __copysign (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clog (y); - __real__ res += M_LN2; - } - else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0) - { - double s = __ieee754_hypot (1.0, rx); - - __real__ res = __ieee754_log (rx + s); - if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); - else - __imag__ res = __ieee754_atan2 (ix, s); - } - else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5) - { - double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0)); - - __real__ res = __ieee754_log (ix + s); - if (adj) - __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2 (s, rx); - } - else if (ix > 1.0 && ix < 1.5 && rx < 0.5) - { - if (rx < DBL_EPSILON * DBL_EPSILON) - { - double ix2m1 = (ix + 1.0) * (ix - 1.0); - double s = __ieee754_sqrt (ix2m1); - - __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2 (s, rx); - } - else - { - double ix2m1 = (ix + 1.0) * (ix - 1.0); - double rx2 = rx * rx; - double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); - double d = __ieee754_sqrt (ix2m1 * ix2m1 + f); - double dp = d + ix2m1; - double dm = f / dp; - double r1 = __ieee754_sqrt ((dm + rx2) / 2.0); - double r2 = rx * ix / r1; - - __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); - } - } - else if (ix == 1.0 && rx < 0.5) - { - if (rx < DBL_EPSILON / 8.0) - { - __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx), - __copysign (1.0, __imag__ x)); - else - __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx)); - } - else - { - double d = rx * __ieee754_sqrt (4.0 + rx * rx); - double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0); - double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0); - - __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1); - } - } - else if (ix < 1.0 && rx < 0.5) - { - if (ix >= DBL_EPSILON) - { - if (rx < DBL_EPSILON * DBL_EPSILON) - { - double onemix2 = (1.0 + ix) * (1.0 - ix); - double s = __ieee754_sqrt (onemix2); - - __real__ res = __log1p (2.0 * rx / s) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); - else - __imag__ res = __ieee754_atan2 (ix, s); - } - else - { - double onemix2 = (1.0 + ix) * (1.0 - ix); - double rx2 = rx * rx; - double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); - double d = __ieee754_sqrt (onemix2 * onemix2 + f); - double dp = d + onemix2; - double dm = f / dp; - double r1 = __ieee754_sqrt ((dp + rx2) / 2.0); - double r2 = rx * ix / r1; - - __real__ res - = __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (rx + r1, - __copysign (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); - } - } - else - { - double s = __ieee754_hypot (1.0, rx); - - __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0; - if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); - else - __imag__ res = __ieee754_atan2 (ix, s); - } - math_check_force_underflow_nonneg (__real__ res); - } - else - { - __real__ y = (rx - ix) * (rx + ix) + 1.0; - __imag__ y = 2.0 * rx * ix; - - y = __csqrt (y); - - __real__ y += rx; - __imag__ y += ix; - - if (adj) - { - double t = __real__ y; - __real__ y = __copysign (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clog (y); - } - - /* Give results the correct sign for the original argument. */ - __real__ res = __copysign (__real__ res, __real__ x); - __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x)); - - return res; -} diff --git a/math/k_casinh_template.c b/math/k_casinh_template.c index 354dde1f3e..74626b1b3f 100644 --- a/math/k_casinh_template.c +++ b/math/k_casinh_template.c @@ -1,6 +1,6 @@ -/* Return arc hyperbole sine for double value, with the imaginary part - of the result possibly adjusted for use in computing other - functions. +/* Return arc hyperbolic sine for a complex float type, with the + imaginary part of the result possibly adjusted for use in + computing other functions. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. @@ -27,18 +27,18 @@ with the imaginary part of the result subtracted from pi/2 if ADJ is nonzero. */ -__complex__ double -__kernel_casinh (__complex__ double x, int adj) +CFLOAT +M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj) { - __complex__ double res; - double rx, ix; - __complex__ double y; + CFLOAT res; + FLOAT rx, ix; + CFLOAT y; /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabs (__real__ x); - ix = fabs (__imag__ x); + rx = M_FABS (__real__ x); + ix = M_FABS (__imag__ x); - if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON) + if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant @@ -49,162 +49,157 @@ __kernel_casinh (__complex__ double x, int adj) if (adj) { - double t = __real__ y; - __real__ y = __copysign (__imag__ y, __imag__ x); + FLOAT t = __real__ y; + __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); __imag__ y = t; } - res = __clog (y); - __real__ res += M_LN2; + res = M_SUF (__clog) (y); + __real__ res += (FLOAT) M_MLIT (M_LN2); } - else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0) + else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8) { - double s = __ieee754_hypot (1.0, rx); + FLOAT s = M_HYPOT (1, rx); - __real__ res = __ieee754_log (rx + s); + __real__ res = M_LOG (rx + s); if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); + __imag__ res = M_ATAN2 (s, __imag__ x); else - __imag__ res = __ieee754_atan2 (ix, s); + __imag__ res = M_ATAN2 (ix, s); } - else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5) + else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5)) { - double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0)); + FLOAT s = M_SQRT ((ix + 1) * (ix - 1)); - __real__ res = __ieee754_log (ix + s); + __real__ res = M_LOG (ix + s); if (adj) - __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); + __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); else - __imag__ res = __ieee754_atan2 (s, rx); + __imag__ res = M_ATAN2 (s, rx); } - else if (ix > 1.0 && ix < 1.5 && rx < 0.5) + else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5)) { - if (rx < DBL_EPSILON * DBL_EPSILON) + if (rx < M_EPSILON * M_EPSILON) { - double ix2m1 = (ix + 1.0) * (ix - 1.0); - double s = __ieee754_sqrt (ix2m1); + FLOAT ix2m1 = (ix + 1) * (ix - 1); + FLOAT s = M_SQRT (ix2m1); - __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0; + __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); + __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); else - __imag__ res = __ieee754_atan2 (s, rx); + __imag__ res = M_ATAN2 (s, rx); } else { - double ix2m1 = (ix + 1.0) * (ix - 1.0); - double rx2 = rx * rx; - double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); - double d = __ieee754_sqrt (ix2m1 * ix2m1 + f); - double dp = d + ix2m1; - double dm = f / dp; - double r1 = __ieee754_sqrt ((dm + rx2) / 2.0); - double r2 = rx * ix / r1; - - __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0; + FLOAT ix2m1 = (ix + 1) * (ix - 1); + FLOAT rx2 = rx * rx; + FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); + FLOAT d = M_SQRT (ix2m1 * ix2m1 + f); + FLOAT dp = d + ix2m1; + FLOAT dm = f / dp; + FLOAT r1 = M_SQRT ((dm + rx2) / 2); + FLOAT r2 = rx * ix / r1; + + __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2, - __imag__ x)); + __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x)); else - __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); + __imag__ res = M_ATAN2 (ix + r2, rx + r1); } } - else if (ix == 1.0 && rx < 0.5) + else if (ix == 1 && rx < M_LIT (0.5)) { - if (rx < DBL_EPSILON / 8.0) + if (rx < M_EPSILON / 8) { - __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0; + __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2; if (adj) - __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx), - __copysign (1.0, __imag__ x)); + __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x)); else - __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx)); + __imag__ res = M_ATAN2 (1, M_SQRT (rx)); } else { - double d = rx * __ieee754_sqrt (4.0 + rx * rx); - double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0); - double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0); + FLOAT d = rx * M_SQRT (4 + rx * rx); + FLOAT s1 = M_SQRT ((d + rx * rx) / 2); + FLOAT s2 = M_SQRT ((d - rx * rx) / 2); - __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0; + __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2, - __imag__ x)); + __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x)); else - __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1); + __imag__ res = M_ATAN2 (1 + s2, rx + s1); } } - else if (ix < 1.0 && rx < 0.5) + else if (ix < 1 && rx < M_LIT (0.5)) { - if (ix >= DBL_EPSILON) + if (ix >= M_EPSILON) { - if (rx < DBL_EPSILON * DBL_EPSILON) + if (rx < M_EPSILON * M_EPSILON) { - double onemix2 = (1.0 + ix) * (1.0 - ix); - double s = __ieee754_sqrt (onemix2); + FLOAT onemix2 = (1 + ix) * (1 - ix); + FLOAT s = M_SQRT (onemix2); - __real__ res = __log1p (2.0 * rx / s) / 2.0; + __real__ res = M_LOG1P (2 * rx / s) / 2; if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); + __imag__ res = M_ATAN2 (s, __imag__ x); else - __imag__ res = __ieee754_atan2 (ix, s); + __imag__ res = M_ATAN2 (ix, s); } else { - double onemix2 = (1.0 + ix) * (1.0 - ix); - double rx2 = rx * rx; - double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); - double d = __ieee754_sqrt (onemix2 * onemix2 + f); - double dp = d + onemix2; - double dm = f / dp; - double r1 = __ieee754_sqrt ((dp + rx2) / 2.0); - double r2 = rx * ix / r1; - - __real__ res - = __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0; + FLOAT onemix2 = (1 + ix) * (1 - ix); + FLOAT rx2 = rx * rx; + FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); + FLOAT d = M_SQRT (onemix2 * onemix2 + f); + FLOAT dp = d + onemix2; + FLOAT dm = f / dp; + FLOAT r1 = M_SQRT ((dp + rx2) / 2); + FLOAT r2 = rx * ix / r1; + + __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx + r1, - __copysign (ix + r2, - __imag__ x)); + __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, + __imag__ x)); else - __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); + __imag__ res = M_ATAN2 (ix + r2, rx + r1); } } else { - double s = __ieee754_hypot (1.0, rx); + FLOAT s = M_HYPOT (1, rx); - __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0; + __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); + __imag__ res = M_ATAN2 (s, __imag__ x); else - __imag__ res = __ieee754_atan2 (ix, s); + __imag__ res = M_ATAN2 (ix, s); } math_check_force_underflow_nonneg (__real__ res); } else { - __real__ y = (rx - ix) * (rx + ix) + 1.0; - __imag__ y = 2.0 * rx * ix; + __real__ y = (rx - ix) * (rx + ix) + 1; + __imag__ y = 2 * rx * ix; - y = __csqrt (y); + y = M_SUF (__csqrt) (y); __real__ y += rx; __imag__ y += ix; if (adj) { - double t = __real__ y; - __real__ y = __copysign (__imag__ y, __imag__ x); + FLOAT t = __real__ y; + __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); __imag__ y = t; } - res = __clog (y); + res = M_SUF (__clog) (y); } /* Give results the correct sign for the original argument. */ - __real__ res = __copysign (__real__ res, __real__ x); - __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x)); + __real__ res = M_COPYSIGN (__real__ res, __real__ x); + __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x)); return res; } diff --git a/math/k_casinhf.c b/math/k_casinhf.c deleted file mode 100644 index 7697f314be..0000000000 --- a/math/k_casinhf.c +++ /dev/null @@ -1,212 +0,0 @@ -/* Return arc hyperbole sine for float value, with the imaginary part - of the result possibly adjusted for use in computing other - functions. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include - -/* Return the complex inverse hyperbolic sine of finite nonzero Z, - with the imaginary part of the result subtracted from pi/2 if ADJ - is nonzero. */ - -__complex__ float -__kernel_casinhf (__complex__ float x, int adj) -{ - __complex__ float res; - float rx, ix; - __complex__ float y; - - /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabsf (__real__ x); - ix = fabsf (__imag__ x); - - if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) - { - /* For large x in the first quadrant, x + csqrt (1 + x * x) - is sufficiently close to 2 * x to make no significant - difference to the result; avoid possible overflow from - the squaring and addition. */ - __real__ y = rx; - __imag__ y = ix; - - if (adj) - { - float t = __real__ y; - __real__ y = __copysignf (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogf (y); - __real__ res += (float) M_LN2; - } - else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) - { - float s = __ieee754_hypotf (1.0f, rx); - - __real__ res = __ieee754_logf (rx + s); - if (adj) - __imag__ res = __ieee754_atan2f (s, __imag__ x); - else - __imag__ res = __ieee754_atan2f (ix, s); - } - else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) - { - float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); - - __real__ res = __ieee754_logf (ix + s); - if (adj) - __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2f (s, rx); - } - else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) - { - if (rx < FLT_EPSILON * FLT_EPSILON) - { - float ix2m1 = (ix + 1.0f) * (ix - 1.0f); - float s = __ieee754_sqrtf (ix2m1); - - __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2f (s, rx); - } - else - { - float ix2m1 = (ix + 1.0f) * (ix - 1.0f); - float rx2 = rx * rx; - float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); - float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); - float dp = d + ix2m1; - float dm = f / dp; - float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); - float r2 = rx * ix / r1; - - __real__ res - = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); - } - } - else if (ix == 1.0f && rx < 0.5f) - { - if (rx < FLT_EPSILON / 8.0f) - { - __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), - __copysignf (1.0f, __imag__ x)); - else - __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); - } - else - { - float d = rx * __ieee754_sqrtf (4.0f + rx * rx); - float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); - float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); - - __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx + s1, - __copysignf (1.0f + s2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); - } - } - else if (ix < 1.0f && rx < 0.5f) - { - if (ix >= FLT_EPSILON) - { - if (rx < FLT_EPSILON * FLT_EPSILON) - { - float onemix2 = (1.0f + ix) * (1.0f - ix); - float s = __ieee754_sqrtf (onemix2); - - __real__ res = __log1pf (2.0f * rx / s) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (s, __imag__ x); - else - __imag__ res = __ieee754_atan2f (ix, s); - } - else - { - float onemix2 = (1.0f + ix) * (1.0f - ix); - float rx2 = rx * rx; - float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); - float d = __ieee754_sqrtf (onemix2 * onemix2 + f); - float dp = d + onemix2; - float dm = f / dp; - float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); - float r2 = rx * ix / r1; - - __real__ res - = __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx + r1, - __copysignf (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); - } - } - else - { - float s = __ieee754_hypotf (1.0f, rx); - - __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (s, __imag__ x); - else - __imag__ res = __ieee754_atan2f (ix, s); - } - math_check_force_underflow_nonneg (__real__ res); - } - else - { - __real__ y = (rx - ix) * (rx + ix) + 1.0f; - __imag__ y = 2.0f * rx * ix; - - y = __csqrtf (y); - - __real__ y += rx; - __imag__ y += ix; - - if (adj) - { - float t = __real__ y; - __real__ y = __copysignf (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogf (y); - } - - /* Give results the correct sign for the original argument. */ - __real__ res = __copysignf (__real__ res, __real__ x); - __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); - - return res; -} diff --git a/math/k_casinhl.c b/math/k_casinhl.c deleted file mode 100644 index 7c4b9c36bf..0000000000 --- a/math/k_casinhl.c +++ /dev/null @@ -1,219 +0,0 @@ -/* Return arc hyperbole sine for long double value, with the imaginary - part of the result possibly adjusted for use in computing other - functions. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include - -/* To avoid spurious overflows, use this definition to treat IBM long - double as approximating an IEEE-style format. */ -#if LDBL_MANT_DIG == 106 -# undef LDBL_EPSILON -# define LDBL_EPSILON 0x1p-106L -#endif - -/* Return the complex inverse hyperbolic sine of finite nonzero Z, - with the imaginary part of the result subtracted from pi/2 if ADJ - is nonzero. */ - -__complex__ long double -__kernel_casinhl (__complex__ long double x, int adj) -{ - __complex__ long double res; - long double rx, ix; - __complex__ long double y; - - /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabsl (__real__ x); - ix = fabsl (__imag__ x); - - if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON) - { - /* For large x in the first quadrant, x + csqrt (1 + x * x) - is sufficiently close to 2 * x to make no significant - difference to the result; avoid possible overflow from - the squaring and addition. */ - __real__ y = rx; - __imag__ y = ix; - - if (adj) - { - long double t = __real__ y; - __real__ y = __copysignl (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogl (y); - __real__ res += M_LN2l; - } - else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L) - { - long double s = __ieee754_hypotl (1.0L, rx); - - __real__ res = __ieee754_logl (rx + s); - if (adj) - __imag__ res = __ieee754_atan2l (s, __imag__ x); - else - __imag__ res = __ieee754_atan2l (ix, s); - } - else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L) - { - long double s = __ieee754_sqrtl ((ix + 1.0L) * (ix - 1.0L)); - - __real__ res = __ieee754_logl (ix + s); - if (adj) - __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2l (s, rx); - } - else if (ix > 1.0L && ix < 1.5L && rx < 0.5L) - { - if (rx < LDBL_EPSILON * LDBL_EPSILON) - { - long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); - long double s = __ieee754_sqrtl (ix2m1); - - __real__ res = __log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx, __copysignl (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2l (s, rx); - } - else - { - long double ix2m1 = (ix + 1.0L) * (ix - 1.0L); - long double rx2 = rx * rx; - long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); - long double d = __ieee754_sqrtl (ix2m1 * ix2m1 + f); - long double dp = d + ix2m1; - long double dm = f / dp; - long double r1 = __ieee754_sqrtl ((dm + rx2) / 2.0L); - long double r2 = rx * ix / r1; - - __real__ res - = __log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx + r1, __copysignl (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); - } - } - else if (ix == 1.0L && rx < 0.5L) - { - if (rx < LDBL_EPSILON / 8.0L) - { - __real__ res = __log1pl (2.0L * (rx + __ieee754_sqrtl (rx))) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (__ieee754_sqrtl (rx), - __copysignl (1.0L, __imag__ x)); - else - __imag__ res = __ieee754_atan2l (1.0L, __ieee754_sqrtl (rx)); - } - else - { - long double d = rx * __ieee754_sqrtl (4.0L + rx * rx); - long double s1 = __ieee754_sqrtl ((d + rx * rx) / 2.0L); - long double s2 = __ieee754_sqrtl ((d - rx * rx) / 2.0L); - - __real__ res = __log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx + s1, - __copysignl (1.0L + s2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2l (1.0L + s2, rx + s1); - } - } - else if (ix < 1.0L && rx < 0.5L) - { - if (ix >= LDBL_EPSILON) - { - if (rx < LDBL_EPSILON * LDBL_EPSILON) - { - long double onemix2 = (1.0L + ix) * (1.0L - ix); - long double s = __ieee754_sqrtl (onemix2); - - __real__ res = __log1pl (2.0L * rx / s) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (s, __imag__ x); - else - __imag__ res = __ieee754_atan2l (ix, s); - } - else - { - long double onemix2 = (1.0L + ix) * (1.0L - ix); - long double rx2 = rx * rx; - long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix); - long double d = __ieee754_sqrtl (onemix2 * onemix2 + f); - long double dp = d + onemix2; - long double dm = f / dp; - long double r1 = __ieee754_sqrtl ((dp + rx2) / 2.0L); - long double r2 = rx * ix / r1; - - __real__ res - = __log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (rx + r1, - __copysignl (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2l (ix + r2, rx + r1); - } - } - else - { - long double s = __ieee754_hypotl (1.0L, rx); - - __real__ res = __log1pl (2.0L * rx * (rx + s)) / 2.0L; - if (adj) - __imag__ res = __ieee754_atan2l (s, __imag__ x); - else - __imag__ res = __ieee754_atan2l (ix, s); - } - math_check_force_underflow_nonneg (__real__ res); - } - else - { - __real__ y = (rx - ix) * (rx + ix) + 1.0L; - __imag__ y = 2.0L * rx * ix; - - y = __csqrtl (y); - - __real__ y += rx; - __imag__ y += ix; - - if (adj) - { - long double t = __real__ y; - __real__ y = __copysignl (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogl (y); - } - - /* Give results the correct sign for the original argument. */ - __real__ res = __copysignl (__real__ res, __real__ x); - __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x)); - - return res; -} diff --git a/math/s_casin.c b/math/s_casin.c deleted file mode 100644 index a37933b597..0000000000 --- a/math/s_casin.c +++ /dev/null @@ -1,66 +0,0 @@ -/* Return arc sine of complex double value. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include - - -__complex__ double -__casin (__complex__ double x) -{ - __complex__ double res; - - if (isnan (__real__ x) || isnan (__imag__ x)) - { - if (__real__ x == 0.0) - { - res = x; - } - else if (isinf (__real__ x) || isinf (__imag__ x)) - { - __real__ res = __nan (""); - __imag__ res = __copysign (HUGE_VAL, __imag__ x); - } - else - { - __real__ res = __nan (""); - __imag__ res = __nan (""); - } - } - else - { - __complex__ double y; - - __real__ y = -__imag__ x; - __imag__ y = __real__ x; - - y = __casinh (y); - - __real__ res = __imag__ y; - __imag__ res = -__real__ y; - } - - return res; -} -weak_alias (__casin, casin) -#ifdef NO_LONG_DOUBLE -strong_alias (__casin, __casinl) -weak_alias (__casin, casinl) -#endif diff --git a/math/s_casin_template.c b/math/s_casin_template.c index a37933b597..5b1e979a16 100644 --- a/math/s_casin_template.c +++ b/math/s_casin_template.c @@ -1,4 +1,4 @@ -/* Return arc sine of complex double value. +/* Return arc sine of a complex float type. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. @@ -22,36 +22,36 @@ #include -__complex__ double -__casin (__complex__ double x) +CFLOAT +M_DECL_FUNC (__casin) (CFLOAT x) { - __complex__ double res; + CFLOAT res; if (isnan (__real__ x) || isnan (__imag__ x)) { - if (__real__ x == 0.0) + if (__real__ x == 0) { res = x; } else if (isinf (__real__ x) || isinf (__imag__ x)) { - __real__ res = __nan (""); - __imag__ res = __copysign (HUGE_VAL, __imag__ x); + __real__ res = M_NAN; + __imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x); } else { - __real__ res = __nan (""); - __imag__ res = __nan (""); + __real__ res = M_NAN; + __imag__ res = M_NAN; } } else { - __complex__ double y; + CFLOAT y; __real__ y = -__imag__ x; __imag__ y = __real__ x; - y = __casinh (y); + y = M_SUF (__casinh) (y); __real__ res = __imag__ y; __imag__ res = -__real__ y; @@ -59,8 +59,9 @@ __casin (__complex__ double x) return res; } -weak_alias (__casin, casin) -#ifdef NO_LONG_DOUBLE -strong_alias (__casin, __casinl) -weak_alias (__casin, casinl) + +declare_mgen_alias (__casin, casin) + +#if M_LIBM_NEED_COMPAT (casin) +declare_mgen_libm_compat (__casin, casin) #endif diff --git a/math/s_casinf.c b/math/s_casinf.c deleted file mode 100644 index ccb5766678..0000000000 --- a/math/s_casinf.c +++ /dev/null @@ -1,64 +0,0 @@ -/* Return arc sine of complex float value. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include - - -__complex__ float -__casinf (__complex__ float x) -{ - __complex__ float res; - - if (isnan (__real__ x) || isnan (__imag__ x)) - { - if (__real__ x == 0.0) - { - res = x; - } - else if (isinf (__real__ x) || isinf (__imag__ x)) - { - __real__ res = __nanf (""); - __imag__ res = __copysignf (HUGE_VALF, __imag__ x); - } - else - { - __real__ res = __nanf (""); - __imag__ res = __nanf (""); - } - } - else - { - __complex__ float y; - - __real__ y = -__imag__ x; - __imag__ y = __real__ x; - - y = __casinhf (y); - - __real__ res = __imag__ y; - __imag__ res = -__real__ y; - } - - return res; -} -#ifndef __casinf -weak_alias (__casinf, casinf) -#endif diff --git a/math/s_casinh.c b/math/s_casinh.c deleted file mode 100644 index 32cbc13991..0000000000 --- a/math/s_casinh.c +++ /dev/null @@ -1,73 +0,0 @@ -/* Return arc hyperbole sine for double value. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include - -__complex__ double -__casinh (__complex__ double x) -{ - __complex__ double res; - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - if (rcls <= FP_INFINITE || icls <= FP_INFINITE) - { - if (icls == FP_INFINITE) - { - __real__ res = __copysign (HUGE_VAL, __real__ x); - - if (rcls == FP_NAN) - __imag__ res = __nan (""); - else - __imag__ res = __copysign (rcls >= FP_ZERO ? M_PI_2 : M_PI_4, - __imag__ x); - } - else if (rcls <= FP_INFINITE) - { - __real__ res = __real__ x; - if ((rcls == FP_INFINITE && icls >= FP_ZERO) - || (rcls == FP_NAN && icls == FP_ZERO)) - __imag__ res = __copysign (0.0, __imag__ x); - else - __imag__ res = __nan (""); - } - else - { - __real__ res = __nan (""); - __imag__ res = __nan (""); - } - } - else if (rcls == FP_ZERO && icls == FP_ZERO) - { - res = x; - } - else - { - res = __kernel_casinh (x, 0); - } - - return res; -} -weak_alias (__casinh, casinh) -#ifdef NO_LONG_DOUBLE -strong_alias (__casinh, __casinhl) -weak_alias (__casinh, casinhl) -#endif diff --git a/math/s_casinh_template.c b/math/s_casinh_template.c index 32cbc13991..fd29e63276 100644 --- a/math/s_casinh_template.c +++ b/math/s_casinh_template.c @@ -1,4 +1,4 @@ -/* Return arc hyperbole sine for double value. +/* Return arc hyperbolic sine for a complex float type. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. @@ -21,10 +21,10 @@ #include #include -__complex__ double -__casinh (__complex__ double x) +CFLOAT +M_DECL_FUNC (__casinh) (CFLOAT x) { - __complex__ double res; + CFLOAT res; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); @@ -32,12 +32,13 @@ __casinh (__complex__ double x) { if (icls == FP_INFINITE) { - __real__ res = __copysign (HUGE_VAL, __real__ x); + __real__ res = M_COPYSIGN (M_HUGE_VAL, __real__ x); if (rcls == FP_NAN) - __imag__ res = __nan (""); + __imag__ res = M_NAN; else - __imag__ res = __copysign (rcls >= FP_ZERO ? M_PI_2 : M_PI_4, + __imag__ res = M_COPYSIGN ((rcls >= FP_ZERO + ? M_MLIT (M_PI_2) : M_MLIT (M_PI_4)), __imag__ x); } else if (rcls <= FP_INFINITE) @@ -45,14 +46,14 @@ __casinh (__complex__ double x) __real__ res = __real__ x; if ((rcls == FP_INFINITE && icls >= FP_ZERO) || (rcls == FP_NAN && icls == FP_ZERO)) - __imag__ res = __copysign (0.0, __imag__ x); + __imag__ res = M_COPYSIGN (0, __imag__ x); else - __imag__ res = __nan (""); + __imag__ res = M_NAN; } else { - __real__ res = __nan (""); - __imag__ res = __nan (""); + __real__ res = M_NAN; + __imag__ res = M_NAN; } } else if (rcls == FP_ZERO && icls == FP_ZERO) @@ -61,13 +62,14 @@ __casinh (__complex__ double x) } else { - res = __kernel_casinh (x, 0); + res = M_SUF (__kernel_casinh) (x, 0); } return res; } -weak_alias (__casinh, casinh) -#ifdef NO_LONG_DOUBLE -strong_alias (__casinh, __casinhl) -weak_alias (__casinh, casinhl) + +declare_mgen_alias (__casinh, casinh) + +#if M_LIBM_NEED_COMPAT (casinh) +declare_mgen_libm_compat (__casinh, casinh) #endif diff --git a/math/s_casinhf.c b/math/s_casinhf.c deleted file mode 100644 index 8d08b4bfcf..0000000000 --- a/math/s_casinhf.c +++ /dev/null @@ -1,71 +0,0 @@ -/* Return arc hyperbole sine for float value. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include - -__complex__ float -__casinhf (__complex__ float x) -{ - __complex__ float res; - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - if (rcls <= FP_INFINITE || icls <= FP_INFINITE) - { - if (icls == FP_INFINITE) - { - __real__ res = __copysignf (HUGE_VALF, __real__ x); - - if (rcls == FP_NAN) - __imag__ res = __nanf (""); - else - __imag__ res = __copysignf (rcls >= FP_ZERO ? M_PI_2 : M_PI_4, - __imag__ x); - } - else if (rcls <= FP_INFINITE) - { - __real__ res = __real__ x; - if ((rcls == FP_INFINITE && icls >= FP_ZERO) - || (rcls == FP_NAN && icls == FP_ZERO)) - __imag__ res = __copysignf (0.0, __imag__ x); - else - __imag__ res = __nanf (""); - } - else - { - __real__ res = __nanf (""); - __imag__ res = __nanf (""); - } - } - else if (rcls == FP_ZERO && icls == FP_ZERO) - { - res = x; - } - else - { - res = __kernel_casinhf (x, 0); - } - - return res; -} -#ifndef __casinhf -weak_alias (__casinhf, casinhf) -#endif diff --git a/math/s_casinhl.c b/math/s_casinhl.c deleted file mode 100644 index 81d888ef6b..0000000000 --- a/math/s_casinhl.c +++ /dev/null @@ -1,69 +0,0 @@ -/* Return arc hyperbole sine for long double value. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include - -__complex__ long double -__casinhl (__complex__ long double x) -{ - __complex__ long double res; - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - if (rcls <= FP_INFINITE || icls <= FP_INFINITE) - { - if (icls == FP_INFINITE) - { - __real__ res = __copysignl (HUGE_VALL, __real__ x); - - if (rcls == FP_NAN) - __imag__ res = __nanl (""); - else - __imag__ res = __copysignl (rcls >= FP_ZERO ? M_PI_2l : M_PI_4l, - __imag__ x); - } - else if (rcls <= FP_INFINITE) - { - __real__ res = __real__ x; - if ((rcls == FP_INFINITE && icls >= FP_ZERO) - || (rcls == FP_NAN && icls == FP_ZERO)) - __imag__ res = __copysignl (0.0, __imag__ x); - else - __imag__ res = __nanl (""); - } - else - { - __real__ res = __nanl (""); - __imag__ res = __nanl (""); - } - } - else if (rcls == FP_ZERO && icls == FP_ZERO) - { - res = x; - } - else - { - res = __kernel_casinhl (x, 0); - } - - return res; -} -weak_alias (__casinhl, casinhl) diff --git a/math/s_casinl.c b/math/s_casinl.c deleted file mode 100644 index 95f25bb355..0000000000 --- a/math/s_casinl.c +++ /dev/null @@ -1,62 +0,0 @@ -/* Return arc sine of complex long double value. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include - - -__complex__ long double -__casinl (__complex__ long double x) -{ - __complex__ long double res; - - if (isnan (__real__ x) || isnan (__imag__ x)) - { - if (__real__ x == 0.0) - { - res = x; - } - else if (isinf (__real__ x) || isinf (__imag__ x)) - { - __real__ res = __nanl (""); - __imag__ res = __copysignl (HUGE_VALL, __imag__ x); - } - else - { - __real__ res = __nanl (""); - __imag__ res = __nanl (""); - } - } - else - { - __complex__ long double y; - - __real__ y = -__imag__ x; - __imag__ y = __real__ x; - - y = __casinhl (y); - - __real__ res = __imag__ y; - __imag__ res = -__real__ y; - } - - return res; -} -weak_alias (__casinl, casinl) diff --git a/math/s_csin.c b/math/s_csin.c deleted file mode 100644 index e071aa650e..0000000000 --- a/math/s_csin.c +++ /dev/null @@ -1,171 +0,0 @@ -/* Complex sine function for double. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include -#include - -__complex__ double -__csin (__complex__ double x) -{ - __complex__ double retval; - int negate = signbit (__real__ x); - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - __real__ x = fabs (__real__ x); - - if (__glibc_likely (icls >= FP_ZERO)) - { - /* Imaginary part is finite. */ - if (__glibc_likely (rcls >= FP_ZERO)) - { - /* Real part is finite. */ - const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); - double sinix, cosix; - - if (__glibc_likely (__real__ x > DBL_MIN)) - { - __sincos (__real__ x, &sinix, &cosix); - } - else - { - sinix = __real__ x; - cosix = 1.0; - } - - if (negate) - sinix = -sinix; - - if (fabs (__imag__ x) > t) - { - double exp_t = __ieee754_exp (t); - double ix = fabs (__imag__ x); - if (signbit (__imag__ x)) - cosix = -cosix; - ix -= t; - sinix *= exp_t / 2.0; - cosix *= exp_t / 2.0; - if (ix > t) - { - ix -= t; - sinix *= exp_t; - cosix *= exp_t; - } - if (ix > t) - { - /* Overflow (original imaginary part of x > 3t). */ - __real__ retval = DBL_MAX * sinix; - __imag__ retval = DBL_MAX * cosix; - } - else - { - double exp_val = __ieee754_exp (ix); - __real__ retval = exp_val * sinix; - __imag__ retval = exp_val * cosix; - } - } - else - { - __real__ retval = __ieee754_cosh (__imag__ x) * sinix; - __imag__ retval = __ieee754_sinh (__imag__ x) * cosix; - } - - math_check_force_underflow_complex (retval); - } - else - { - if (icls == FP_ZERO) - { - /* Imaginary part is 0.0. */ - __real__ retval = __nan (""); - __imag__ retval = __imag__ x; - - if (rcls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - else - { - __real__ retval = __nan (""); - __imag__ retval = __nan (""); - - feraiseexcept (FE_INVALID); - } - } - } - else if (icls == FP_INFINITE) - { - /* Imaginary part is infinite. */ - if (rcls == FP_ZERO) - { - /* Real part is 0.0. */ - __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __imag__ x; - } - else if (rcls > FP_ZERO) - { - /* Real part is finite. */ - double sinix, cosix; - - if (__glibc_likely (__real__ x > DBL_MIN)) - { - __sincos (__real__ x, &sinix, &cosix); - } - else - { - sinix = __real__ x; - cosix = 1.0; - } - - __real__ retval = __copysign (HUGE_VAL, sinix); - __imag__ retval = __copysign (HUGE_VAL, cosix); - - if (negate) - __real__ retval = -__real__ retval; - if (signbit (__imag__ x)) - __imag__ retval = -__imag__ retval; - } - else - { - /* The addition raises the invalid exception. */ - __real__ retval = __nan (""); - __imag__ retval = HUGE_VAL; - - if (rcls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - } - else - { - if (rcls == FP_ZERO) - __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); - else - __real__ retval = __nan (""); - __imag__ retval = __nan (""); - } - - return retval; -} -weak_alias (__csin, csin) -#ifdef NO_LONG_DOUBLE -strong_alias (__csin, __csinl) -weak_alias (__csin, csinl) -#endif diff --git a/math/s_csin_template.c b/math/s_csin_template.c index e071aa650e..59d887693c 100644 --- a/math/s_csin_template.c +++ b/math/s_csin_template.c @@ -1,4 +1,4 @@ -/* Complex sine function for double. +/* Complex sine function for float types. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. @@ -23,15 +23,15 @@ #include #include -__complex__ double -__csin (__complex__ double x) +CFLOAT +M_DECL_FUNC (__csin) (CFLOAT x) { - __complex__ double retval; + CFLOAT retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); - __real__ x = fabs (__real__ x); + __real__ x = M_FABS (__real__ x); if (__glibc_likely (icls >= FP_ZERO)) { @@ -39,31 +39,31 @@ __csin (__complex__ double x) if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ - const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); - double sinix, cosix; + const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); + FLOAT sinix, cosix; - if (__glibc_likely (__real__ x > DBL_MIN)) + if (__glibc_likely (__real__ x > M_MIN)) { - __sincos (__real__ x, &sinix, &cosix); + M_SINCOS (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; - cosix = 1.0; + cosix = 1; } if (negate) sinix = -sinix; - if (fabs (__imag__ x) > t) + if (M_FABS (__imag__ x) > t) { - double exp_t = __ieee754_exp (t); - double ix = fabs (__imag__ x); + FLOAT exp_t = M_EXP (t); + FLOAT ix = M_FABS (__imag__ x); if (signbit (__imag__ x)) cosix = -cosix; ix -= t; - sinix *= exp_t / 2.0; - cosix *= exp_t / 2.0; + sinix *= exp_t / 2; + cosix *= exp_t / 2; if (ix > t) { ix -= t; @@ -73,20 +73,20 @@ __csin (__complex__ double x) if (ix > t) { /* Overflow (original imaginary part of x > 3t). */ - __real__ retval = DBL_MAX * sinix; - __imag__ retval = DBL_MAX * cosix; + __real__ retval = M_MAX * sinix; + __imag__ retval = M_MAX * cosix; } else { - double exp_val = __ieee754_exp (ix); + FLOAT exp_val = M_EXP (ix); __real__ retval = exp_val * sinix; __imag__ retval = exp_val * cosix; } } else { - __real__ retval = __ieee754_cosh (__imag__ x) * sinix; - __imag__ retval = __ieee754_sinh (__imag__ x) * cosix; + __real__ retval = M_COSH (__imag__ x) * sinix; + __imag__ retval = M_SINH (__imag__ x) * cosix; } math_check_force_underflow_complex (retval); @@ -96,7 +96,7 @@ __csin (__complex__ double x) if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ - __real__ retval = __nan (""); + __real__ retval = M_NAN; __imag__ retval = __imag__ x; if (rcls == FP_INFINITE) @@ -104,8 +104,8 @@ __csin (__complex__ double x) } else { - __real__ retval = __nan (""); - __imag__ retval = __nan (""); + __real__ retval = M_NAN; + __imag__ retval = M_NAN; feraiseexcept (FE_INVALID); } @@ -117,26 +117,26 @@ __csin (__complex__ double x) if (rcls == FP_ZERO) { /* Real part is 0.0. */ - __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); + __real__ retval = M_COPYSIGN (0, negate ? -1 : 1); __imag__ retval = __imag__ x; } else if (rcls > FP_ZERO) { /* Real part is finite. */ - double sinix, cosix; + FLOAT sinix, cosix; - if (__glibc_likely (__real__ x > DBL_MIN)) + if (__glibc_likely (__real__ x > M_MIN)) { - __sincos (__real__ x, &sinix, &cosix); + M_SINCOS (__real__ x, &sinix, &cosix); } else { sinix = __real__ x; - cosix = 1.0; + cosix = 1; } - __real__ retval = __copysign (HUGE_VAL, sinix); - __imag__ retval = __copysign (HUGE_VAL, cosix); + __real__ retval = M_COPYSIGN (M_HUGE_VAL, sinix); + __imag__ retval = M_COPYSIGN (M_HUGE_VAL, cosix); if (negate) __real__ retval = -__real__ retval; @@ -146,8 +146,8 @@ __csin (__complex__ double x) else { /* The addition raises the invalid exception. */ - __real__ retval = __nan (""); - __imag__ retval = HUGE_VAL; + __real__ retval = M_NAN; + __imag__ retval = M_HUGE_VAL; if (rcls == FP_INFINITE) feraiseexcept (FE_INVALID); @@ -156,16 +156,17 @@ __csin (__complex__ double x) else { if (rcls == FP_ZERO) - __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); + __real__ retval = M_COPYSIGN (0, negate ? -1 : 1); else - __real__ retval = __nan (""); - __imag__ retval = __nan (""); + __real__ retval = M_NAN; + __imag__ retval = M_NAN; } return retval; } -weak_alias (__csin, csin) -#ifdef NO_LONG_DOUBLE -strong_alias (__csin, __csinl) -weak_alias (__csin, csinl) + +declare_mgen_alias (__csin, csin) + +#if M_LIBM_NEED_COMPAT (csin) +declare_mgen_libm_compat (__csin, csin) #endif diff --git a/math/s_csinf.c b/math/s_csinf.c deleted file mode 100644 index 1256abcb85..0000000000 --- a/math/s_csinf.c +++ /dev/null @@ -1,169 +0,0 @@ -/* Complex sine function for float. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include -#include - -__complex__ float -__csinf (__complex__ float x) -{ - __complex__ float retval; - int negate = signbit (__real__ x); - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - __real__ x = fabsf (__real__ x); - - if (__glibc_likely (icls >= FP_ZERO)) - { - /* Imaginary part is finite. */ - if (__glibc_likely (rcls >= FP_ZERO)) - { - /* Real part is finite. */ - const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2); - float sinix, cosix; - - if (__glibc_likely (__real__ x > FLT_MIN)) - { - __sincosf (__real__ x, &sinix, &cosix); - } - else - { - sinix = __real__ x; - cosix = 1.0f; - } - - if (negate) - sinix = -sinix; - - if (fabsf (__imag__ x) > t) - { - float exp_t = __ieee754_expf (t); - float ix = fabsf (__imag__ x); - if (signbit (__imag__ x)) - cosix = -cosix; - ix -= t; - sinix *= exp_t / 2.0f; - cosix *= exp_t / 2.0f; - if (ix > t) - { - ix -= t; - sinix *= exp_t; - cosix *= exp_t; - } - if (ix > t) - { - /* Overflow (original imaginary part of x > 3t). */ - __real__ retval = FLT_MAX * sinix; - __imag__ retval = FLT_MAX * cosix; - } - else - { - float exp_val = __ieee754_expf (ix); - __real__ retval = exp_val * sinix; - __imag__ retval = exp_val * cosix; - } - } - else - { - __real__ retval = __ieee754_coshf (__imag__ x) * sinix; - __imag__ retval = __ieee754_sinhf (__imag__ x) * cosix; - } - - math_check_force_underflow_complex (retval); - } - else - { - if (icls == FP_ZERO) - { - /* Imaginary part is 0.0. */ - __real__ retval = __nanf (""); - __imag__ retval = __imag__ x; - - if (rcls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - else - { - __real__ retval = __nanf (""); - __imag__ retval = __nanf (""); - - feraiseexcept (FE_INVALID); - } - } - } - else if (icls == FP_INFINITE) - { - /* Imaginary part is infinite. */ - if (rcls == FP_ZERO) - { - /* Real part is 0.0. */ - __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __imag__ x; - } - else if (rcls > FP_ZERO) - { - /* Real part is finite. */ - float sinix, cosix; - - if (__glibc_likely (__real__ x > FLT_MIN)) - { - __sincosf (__real__ x, &sinix, &cosix); - } - else - { - sinix = __real__ x; - cosix = 1.0f; - } - - __real__ retval = __copysignf (HUGE_VALF, sinix); - __imag__ retval = __copysignf (HUGE_VALF, cosix); - - if (negate) - __real__ retval = -__real__ retval; - if (signbit (__imag__ x)) - __imag__ retval = -__imag__ retval; - } - else - { - /* The addition raises the invalid exception. */ - __real__ retval = __nanf (""); - __imag__ retval = HUGE_VALF; - - if (rcls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - } - else - { - if (rcls == FP_ZERO) - __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); - else - __real__ retval = __nanf (""); - __imag__ retval = __nanf (""); - } - - return retval; -} -#ifndef __csinf -weak_alias (__csinf, csinf) -#endif diff --git a/math/s_csinh.c b/math/s_csinh.c deleted file mode 100644 index 5fb60ed0cb..0000000000 --- a/math/s_csinh.c +++ /dev/null @@ -1,166 +0,0 @@ -/* Complex sine hyperbole function for double. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include -#include - -__complex__ double -__csinh (__complex__ double x) -{ - __complex__ double retval; - int negate = signbit (__real__ x); - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - __real__ x = fabs (__real__ x); - - if (__glibc_likely (rcls >= FP_ZERO)) - { - /* Real part is finite. */ - if (__glibc_likely (icls >= FP_ZERO)) - { - /* Imaginary part is finite. */ - const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); - double sinix, cosix; - - if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) - { - __sincos (__imag__ x, &sinix, &cosix); - } - else - { - sinix = __imag__ x; - cosix = 1.0; - } - - if (negate) - cosix = -cosix; - - if (fabs (__real__ x) > t) - { - double exp_t = __ieee754_exp (t); - double rx = fabs (__real__ x); - if (signbit (__real__ x)) - cosix = -cosix; - rx -= t; - sinix *= exp_t / 2.0; - cosix *= exp_t / 2.0; - if (rx > t) - { - rx -= t; - sinix *= exp_t; - cosix *= exp_t; - } - if (rx > t) - { - /* Overflow (original real part of x > 3t). */ - __real__ retval = DBL_MAX * cosix; - __imag__ retval = DBL_MAX * sinix; - } - else - { - double exp_val = __ieee754_exp (rx); - __real__ retval = exp_val * cosix; - __imag__ retval = exp_val * sinix; - } - } - else - { - __real__ retval = __ieee754_sinh (__real__ x) * cosix; - __imag__ retval = __ieee754_cosh (__real__ x) * sinix; - } - - math_check_force_underflow_complex (retval); - } - else - { - if (rcls == FP_ZERO) - { - /* Real part is 0.0. */ - __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __nan ("") + __nan (""); - - if (icls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - else - { - __real__ retval = __nan (""); - __imag__ retval = __nan (""); - - feraiseexcept (FE_INVALID); - } - } - } - else if (rcls == FP_INFINITE) - { - /* Real part is infinite. */ - if (__glibc_likely (icls > FP_ZERO)) - { - /* Imaginary part is finite. */ - double sinix, cosix; - - if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) - { - __sincos (__imag__ x, &sinix, &cosix); - } - else - { - sinix = __imag__ x; - cosix = 1.0; - } - - __real__ retval = __copysign (HUGE_VAL, cosix); - __imag__ retval = __copysign (HUGE_VAL, sinix); - - if (negate) - __real__ retval = -__real__ retval; - } - else if (icls == FP_ZERO) - { - /* Imaginary part is 0.0. */ - __real__ retval = negate ? -HUGE_VAL : HUGE_VAL; - __imag__ retval = __imag__ x; - } - else - { - /* The addition raises the invalid exception. */ - __real__ retval = HUGE_VAL; - __imag__ retval = __nan ("") + __nan (""); - - if (icls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - } - else - { - __real__ retval = __nan (""); - __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan (""); - } - - return retval; -} -weak_alias (__csinh, csinh) -#ifdef NO_LONG_DOUBLE -strong_alias (__csinh, __csinhl) -weak_alias (__csinh, csinhl) -#endif diff --git a/math/s_csinh_template.c b/math/s_csinh_template.c index 5fb60ed0cb..22c0c315b0 100644 --- a/math/s_csinh_template.c +++ b/math/s_csinh_template.c @@ -1,4 +1,4 @@ -/* Complex sine hyperbole function for double. +/* Complex sine hyperbole function for float types. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. @@ -23,15 +23,15 @@ #include #include -__complex__ double -__csinh (__complex__ double x) +CFLOAT +M_DECL_FUNC (__csinh) (CFLOAT x) { - __complex__ double retval; + CFLOAT retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); - __real__ x = fabs (__real__ x); + __real__ x = M_FABS (__real__ x); if (__glibc_likely (rcls >= FP_ZERO)) { @@ -39,31 +39,31 @@ __csinh (__complex__ double x) if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ - const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2); - double sinix, cosix; + const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); + FLOAT sinix, cosix; - if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) + if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { - __sincos (__imag__ x, &sinix, &cosix); + M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; - cosix = 1.0; + cosix = 1; } if (negate) cosix = -cosix; - if (fabs (__real__ x) > t) + if (M_FABS (__real__ x) > t) { - double exp_t = __ieee754_exp (t); - double rx = fabs (__real__ x); + FLOAT exp_t = M_EXP (t); + FLOAT rx = M_FABS (__real__ x); if (signbit (__real__ x)) cosix = -cosix; rx -= t; - sinix *= exp_t / 2.0; - cosix *= exp_t / 2.0; + sinix *= exp_t / 2; + cosix *= exp_t / 2; if (rx > t) { rx -= t; @@ -73,20 +73,20 @@ __csinh (__complex__ double x) if (rx > t) { /* Overflow (original real part of x > 3t). */ - __real__ retval = DBL_MAX * cosix; - __imag__ retval = DBL_MAX * sinix; + __real__ retval = M_MAX * cosix; + __imag__ retval = M_MAX * sinix; } else { - double exp_val = __ieee754_exp (rx); + FLOAT exp_val = M_EXP (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { - __real__ retval = __ieee754_sinh (__real__ x) * cosix; - __imag__ retval = __ieee754_cosh (__real__ x) * sinix; + __real__ retval = M_SINH (__real__ x) * cosix; + __imag__ retval = M_COSH (__real__ x) * sinix; } math_check_force_underflow_complex (retval); @@ -96,16 +96,16 @@ __csinh (__complex__ double x) if (rcls == FP_ZERO) { /* Real part is 0.0. */ - __real__ retval = __copysign (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __nan ("") + __nan (""); + __real__ retval = M_COPYSIGN (0, negate ? -1 : 1); + __imag__ retval = M_NAN + M_NAN; if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { - __real__ retval = __nan (""); - __imag__ retval = __nan (""); + __real__ retval = M_NAN; + __imag__ retval = M_NAN; feraiseexcept (FE_INVALID); } @@ -117,20 +117,20 @@ __csinh (__complex__ double x) if (__glibc_likely (icls > FP_ZERO)) { /* Imaginary part is finite. */ - double sinix, cosix; + FLOAT sinix, cosix; - if (__glibc_likely (fabs (__imag__ x) > DBL_MIN)) + if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { - __sincos (__imag__ x, &sinix, &cosix); + M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; - cosix = 1.0; + cosix = 1; } - __real__ retval = __copysign (HUGE_VAL, cosix); - __imag__ retval = __copysign (HUGE_VAL, sinix); + __real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix); + __imag__ retval = M_COPYSIGN (M_HUGE_VAL, sinix); if (negate) __real__ retval = -__real__ retval; @@ -138,14 +138,14 @@ __csinh (__complex__ double x) else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ - __real__ retval = negate ? -HUGE_VAL : HUGE_VAL; + __real__ retval = negate ? -M_HUGE_VAL : M_HUGE_VAL; __imag__ retval = __imag__ x; } else { /* The addition raises the invalid exception. */ - __real__ retval = HUGE_VAL; - __imag__ retval = __nan ("") + __nan (""); + __real__ retval = M_HUGE_VAL; + __imag__ retval = M_NAN + M_NAN; if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); @@ -153,14 +153,15 @@ __csinh (__complex__ double x) } else { - __real__ retval = __nan (""); - __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nan (""); + __real__ retval = M_NAN; + __imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN; } return retval; } -weak_alias (__csinh, csinh) -#ifdef NO_LONG_DOUBLE -strong_alias (__csinh, __csinhl) -weak_alias (__csinh, csinhl) + +declare_mgen_alias (__csinh, csinh) + +#if M_LIBM_NEED_COMPAT (csinh) +declare_mgen_libm_compat (__csinh, csinh) #endif diff --git a/math/s_csinhf.c b/math/s_csinhf.c deleted file mode 100644 index 36b42ca465..0000000000 --- a/math/s_csinhf.c +++ /dev/null @@ -1,164 +0,0 @@ -/* Complex sine hyperbole function for float. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include -#include - -__complex__ float -__csinhf (__complex__ float x) -{ - __complex__ float retval; - int negate = signbit (__real__ x); - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - __real__ x = fabsf (__real__ x); - - if (__glibc_likely (rcls >= FP_ZERO)) - { - /* Real part is finite. */ - if (__glibc_likely (icls >= FP_ZERO)) - { - /* Imaginary part is finite. */ - const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2); - float sinix, cosix; - - if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN)) - { - __sincosf (__imag__ x, &sinix, &cosix); - } - else - { - sinix = __imag__ x; - cosix = 1.0f; - } - - if (negate) - cosix = -cosix; - - if (fabsf (__real__ x) > t) - { - float exp_t = __ieee754_expf (t); - float rx = fabsf (__real__ x); - if (signbit (__real__ x)) - cosix = -cosix; - rx -= t; - sinix *= exp_t / 2.0f; - cosix *= exp_t / 2.0f; - if (rx > t) - { - rx -= t; - sinix *= exp_t; - cosix *= exp_t; - } - if (rx > t) - { - /* Overflow (original real part of x > 3t). */ - __real__ retval = FLT_MAX * cosix; - __imag__ retval = FLT_MAX * sinix; - } - else - { - float exp_val = __ieee754_expf (rx); - __real__ retval = exp_val * cosix; - __imag__ retval = exp_val * sinix; - } - } - else - { - __real__ retval = __ieee754_sinhf (__real__ x) * cosix; - __imag__ retval = __ieee754_coshf (__real__ x) * sinix; - } - - math_check_force_underflow_complex (retval); - } - else - { - if (rcls == FP_ZERO) - { - /* Real part is 0.0. */ - __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __nanf ("") + __nanf (""); - - if (icls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - else - { - __real__ retval = __nanf (""); - __imag__ retval = __nanf (""); - - feraiseexcept (FE_INVALID); - } - } - } - else if (rcls == FP_INFINITE) - { - /* Real part is infinite. */ - if (__glibc_likely (icls > FP_ZERO)) - { - /* Imaginary part is finite. */ - float sinix, cosix; - - if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN)) - { - __sincosf (__imag__ x, &sinix, &cosix); - } - else - { - sinix = __imag__ x; - cosix = 1.0f; - } - - __real__ retval = __copysignf (HUGE_VALF, cosix); - __imag__ retval = __copysignf (HUGE_VALF, sinix); - - if (negate) - __real__ retval = -__real__ retval; - } - else if (icls == FP_ZERO) - { - /* Imaginary part is 0.0. */ - __real__ retval = negate ? -HUGE_VALF : HUGE_VALF; - __imag__ retval = __imag__ x; - } - else - { - /* The addition raises the invalid exception. */ - __real__ retval = HUGE_VALF; - __imag__ retval = __nanf ("") + __nanf (""); - - if (icls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - } - else - { - __real__ retval = __nanf (""); - __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf (""); - } - - return retval; -} -#ifndef __csinhf -weak_alias (__csinhf, csinhf) -#endif diff --git a/math/s_csinhl.c b/math/s_csinhl.c deleted file mode 100644 index c231d7b06f..0000000000 --- a/math/s_csinhl.c +++ /dev/null @@ -1,162 +0,0 @@ -/* Complex sine hyperbole function for long double. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include -#include - -__complex__ long double -__csinhl (__complex__ long double x) -{ - __complex__ long double retval; - int negate = signbit (__real__ x); - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - __real__ x = fabsl (__real__ x); - - if (__glibc_likely (rcls >= FP_ZERO)) - { - /* Real part is finite. */ - if (__glibc_likely (icls >= FP_ZERO)) - { - /* Imaginary part is finite. */ - const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l); - long double sinix, cosix; - - if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN)) - { - __sincosl (__imag__ x, &sinix, &cosix); - } - else - { - sinix = __imag__ x; - cosix = 1.0; - } - - if (negate) - cosix = -cosix; - - if (fabsl (__real__ x) > t) - { - long double exp_t = __ieee754_expl (t); - long double rx = fabsl (__real__ x); - if (signbit (__real__ x)) - cosix = -cosix; - rx -= t; - sinix *= exp_t / 2.0L; - cosix *= exp_t / 2.0L; - if (rx > t) - { - rx -= t; - sinix *= exp_t; - cosix *= exp_t; - } - if (rx > t) - { - /* Overflow (original real part of x > 3t). */ - __real__ retval = LDBL_MAX * cosix; - __imag__ retval = LDBL_MAX * sinix; - } - else - { - long double exp_val = __ieee754_expl (rx); - __real__ retval = exp_val * cosix; - __imag__ retval = exp_val * sinix; - } - } - else - { - __real__ retval = __ieee754_sinhl (__real__ x) * cosix; - __imag__ retval = __ieee754_coshl (__real__ x) * sinix; - } - - math_check_force_underflow_complex (retval); - } - else - { - if (rcls == FP_ZERO) - { - /* Real part is 0.0. */ - __real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __nanl ("") + __nanl (""); - - if (icls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - else - { - __real__ retval = __nanl (""); - __imag__ retval = __nanl (""); - - feraiseexcept (FE_INVALID); - } - } - } - else if (rcls == FP_INFINITE) - { - /* Real part is infinite. */ - if (__glibc_likely (icls > FP_ZERO)) - { - /* Imaginary part is finite. */ - long double sinix, cosix; - - if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN)) - { - __sincosl (__imag__ x, &sinix, &cosix); - } - else - { - sinix = __imag__ x; - cosix = 1.0; - } - - __real__ retval = __copysignl (HUGE_VALL, cosix); - __imag__ retval = __copysignl (HUGE_VALL, sinix); - - if (negate) - __real__ retval = -__real__ retval; - } - else if (icls == FP_ZERO) - { - /* Imaginary part is 0.0. */ - __real__ retval = negate ? -HUGE_VALL : HUGE_VALL; - __imag__ retval = __imag__ x; - } - else - { - /* The addition raises the invalid exception. */ - __real__ retval = HUGE_VALL; - __imag__ retval = __nanl ("") + __nanl (""); - - if (icls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - } - else - { - __real__ retval = __nanl (""); - __imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanl (""); - } - - return retval; -} -weak_alias (__csinhl, csinhl) diff --git a/math/s_csinl.c b/math/s_csinl.c deleted file mode 100644 index 9742a31723..0000000000 --- a/math/s_csinl.c +++ /dev/null @@ -1,167 +0,0 @@ -/* Complex sine function for long double. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper , 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - . */ - -#include -#include -#include -#include -#include - -__complex__ long double -__csinl (__complex__ long double x) -{ - __complex__ long double retval; - int negate = signbit (__real__ x); - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - __real__ x = fabsl (__real__ x); - - if (__glibc_likely (icls >= FP_ZERO)) - { - /* Imaginary part is finite. */ - if (__glibc_likely (rcls >= FP_ZERO)) - { - /* Real part is finite. */ - const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l); - long double sinix, cosix; - - if (__glibc_likely (__real__ x > LDBL_MIN)) - { - __sincosl (__real__ x, &sinix, &cosix); - } - else - { - sinix = __real__ x; - cosix = 1.0; - } - - if (negate) - sinix = -sinix; - - if (fabsl (__imag__ x) > t) - { - long double exp_t = __ieee754_expl (t); - long double ix = fabsl (__imag__ x); - if (signbit (__imag__ x)) - cosix = -cosix; - ix -= t; - sinix *= exp_t / 2.0L; - cosix *= exp_t / 2.0L; - if (ix > t) - { - ix -= t; - sinix *= exp_t; - cosix *= exp_t; - } - if (ix > t) - { - /* Overflow (original imaginary part of x > 3t). */ - __real__ retval = LDBL_MAX * sinix; - __imag__ retval = LDBL_MAX * cosix; - } - else - { - long double exp_val = __ieee754_expl (ix); - __real__ retval = exp_val * sinix; - __imag__ retval = exp_val * cosix; - } - } - else - { - __real__ retval = __ieee754_coshl (__imag__ x) * sinix; - __imag__ retval = __ieee754_sinhl (__imag__ x) * cosix; - } - - math_check_force_underflow_complex (retval); - } - else - { - if (icls == FP_ZERO) - { - /* Imaginary part is 0.0. */ - __real__ retval = __nanl (""); - __imag__ retval = __imag__ x; - - if (rcls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - else - { - __real__ retval = __nanl (""); - __imag__ retval = __nanl (""); - - feraiseexcept (FE_INVALID); - } - } - } - else if (icls == FP_INFINITE) - { - /* Imaginary part is infinite. */ - if (rcls == FP_ZERO) - { - /* Real part is 0.0. */ - __real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0); - __imag__ retval = __imag__ x; - } - else if (rcls > FP_ZERO) - { - /* Real part is finite. */ - long double sinix, cosix; - - if (__glibc_likely (__real__ x > LDBL_MIN)) - { - __sincosl (__real__ x, &sinix, &cosix); - } - else - { - sinix = __real__ x; - cosix = 1.0; - } - - __real__ retval = __copysignl (HUGE_VALL, sinix); - __imag__ retval = __copysignl (HUGE_VALL, cosix); - - if (negate) - __real__ retval = -__real__ retval; - if (signbit (__imag__ x)) - __imag__ retval = -__imag__ retval; - } - else - { - /* The addition raises the invalid exception. */ - __real__ retval = __nanl (""); - __imag__ retval = HUGE_VALL; - - if (rcls == FP_INFINITE) - feraiseexcept (FE_INVALID); - } - } - else - { - if (rcls == FP_ZERO) - __real__ retval = __copysignl (0.0, negate ? -1.0 : 1.0); - else - __real__ retval = __nanl (""); - __imag__ retval = __nanl (""); - } - - return retval; -} -weak_alias (__csinl, csinl) -- cgit v1.2.3