Age | Commit message (Collapse) | Author |
|
* sysdeps/mach/hurd/msync.c (msync): Fix syntax.
|
|
* sysdeps/mach/hurd/msync.c: New file.
|
|
23848).
Looking at kernel-features.h files, I saw that SPARC was missing full
information on when it gained separate socket syscalls.
This patch adds such information to the SPARC kernel-features.h. It
also corrects what appear to be bugs in the existing code (that would
cause syscalls to be assumed to be present when not actually present).
Various __ASSUME_* macros, defined by default, were not undefined for
32-bit despite those syscalls only being added for 32-bit in Linux
4.4. Some syscalls were used in the SPARC64 syscalls.list but only
added in 4.4; this was harmless before the __NR_* macros were defined
at all, but once the macros were defined it means a build with
post-4.4 headers would assume the syscalls to be present regardless of
--enable-kernel version. Then, various __ASSUME_* macros were
previously not defined in cases where they could be defined (this part
of the patch is just an optimization, not a bug fix).
Note the observation in a comment in the patch that even the latest
Linux kernel for SPARC does not have getpeername and getsockname
syscalls in the compat syscall table for 32-bit binaries on 64-bit
kernels (so glibc can't assume those syscalls to be present for 32-bit
at all, although the 32-bit syscall table gained them in 4.4).
Tested (compilation only) for SPARC with build-many-glibcs.py.
[BZ #23848]
* sysdeps/unix/sysv/linux/sparc/kernel-features.h [!__arch64__ &&
__LINUX_KERNEL_VERSION < 0x040400] (__ASSUME_SENDMSG_SYSCALL):
Undefine.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_RECVMSG_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_SENDTO_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_ACCEPT_SYSCALL): Undefine under this condition, not just
[!__arch64__].
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_CONNECT_SYSCALL): Likewise.
[!__arch64__ && __LINUX_KERNEL_VERSION < 0x040400]
(__ASSUME_RECVFROM_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040400] (__ASSUME_BIND_SYSCALL):
Define.
[__LINUX_KERNEL_VERSION >= 0x040400] (__ASSUME_LISTEN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040400]
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/syscalls.list (bind):
Remove.
(listen): Likewise.
(setsockopt): Likewise.
|
|
GAS treats the R5900 as MIPS III, with some modifications. The MIPS III
designation means that the GNU C Library will try to assemble the LL and
SC instructions, even though they are not implemented in the R5900. GAS
will therefore produce the following errors:
Error: opcode not supported on this processor: r5900 (mips3) `ll $2,0($4)'
Error: opcode not supported on this processor: r5900 (mips3) `sc $6,0($4)'
The MIPS II ISA override as used here enables the kernel to trap and
emulate the LL and SC instructions, as required.
This change has been tested by compiling the GNU C Library 2.27 with a
GCC 8.2.0 cross-compiler for mipsr5900el-unknown-linux-gnu under Gentoo.
* sysdeps/mips/sys/tas.h (_test_and_set): Handle the R5900 CPU
with the ISA override.
|
|
The #else of two nested #if clauses were identical.
* sysdeps/unix/sysv/linux/sysdep-vdso.h: Simplify an #if #else
#endif.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
|
|
* sysdeps/mach/hurd/errnos.awk: Avoid printing errnos.d.
* sysdeps/gnu/errlist.c (EIEIO): Move text to...
* manual/errno.texi (EIEIO): ... here.
* sysdeps/gnu/errlist.c (EIEIO): Regenerate.
* sysdeps/mach/hurd/bits/errno.h: Regenerate.
|
|
* sysdeps/gnu/errlist.c (EIEIO): Fix comment marker.
|
|
* sysdeps/gnu/errlist.c (EIEIO): Document how translators should
translate the error message.
|
|
Mark the ra register as undefined in _start, so that unwinding through
main works correctly. Also, don't use a tail call so that ra points after
the call to __libc_start_main, not after the previous call.
|
|
* sysdeps/mach/hurd/i386/intr-msg.h (INTR_MSG_TRAP): Make
_hurd_intr_rpc_msg_about_to global point to start of controlled
assembly snippet. Make it check canceled flag.
* hurd/hurdsig.c (_hurdsig_abort_rpcs): Only mutate thread if it passed
the _hurd_intr_rpc_msg_about_to point.
* hurd/intr-msg.c (_hurd_intr_rpc_mach_msg): Remove comment on mutation
issue, remove cancel flag check.
|
|
When new symbol versions were introduced without SVID compatible
error handling the exp2f, log2f and powf symbols were accidentally
removed from the ia64 lim.a. The regression was introduced by
the commits
f5f0f5265162fe6f4f238abcd3086985f7c38d6d
New expf and exp2f version without SVID compat wrapper
72d3d281080be9f674982067d72874fd6cdb4b64
New symbol version for logf, log2f and powf without SVID compat
With WEAK_LIBM_ENTRY(foo), there is a hidden __foo and weak foo
symbol definition in both SHARED and !SHARED build.
[BZ #23822]
* sysdeps/ia64/fpu/e_exp2f.S (exp2f): Use WEAK_LIBM_ENTRY.
* sysdeps/ia64/fpu/e_log2f.S (log2f): Likewise.
* sysdeps/ia64/fpu/e_exp2f.S (powf): Likewise.
|
|
This patch adds the IN_MASK_CREATE macro from Linux 4.19 to
sys/inotify.h.
Tested for x86_64.
* sysdeps/unix/sysv/linux/sys/inotify.h (IN_MASK_CREATE): New
macro.
|
|
We can use long int on sparcv9, but on sparc64, we must match the int
type used by the kernel (and not long int, as in POSIX).
|
|
* sysdeps/mach/hurd/i386/Makefile [$(subdir) = conform]
(test-xfail-ISO11/threads.h/linknamespace,
test-xfail-ISO11/threads.h/conform): Add.
|
|
To determine whether the default time_t interfaces are 32-bit
and so need conversions, or are 64-bit and so are compatible
with the internal 64-bit type without conversions, a macro
giving the size of the default time_t is also required.
This macro is called __TIMESIZE.
This macro can then be used instead of __WORDSIZE in msq-pad.h
and shm-pad.h files, which in turn allows removing their x86
variants, and in sem-pad.h files but keeping the x86 variant.
This patch was tested by running 'make check' on branch master
then applying this patch and running 'make check' again, and
checking that both 'make check' yield identical results.
This was done on x86_64-linux-gnu and i686-linux-gnu.
* bits/timesize.h: New file.
* stdlib/Makefile (headers): Add bits/timesize.h.
* sysdeps/unix/sysv/linux/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME): Use __TIMESIZE instead of __WORDSIZE.
* sysdeps/unix/sysv/linux/bits/sem-pad.h
(__SEM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h
(__SHM_PAD_AFTER_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h
(__MSQ_PAD_AFTER_TIME, __MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME, __SHM_PAD_BETWEEN_TIME_AND_SEGSZ): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h
(__MSQ_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h
(__SEM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h
(__SHM_PAD_BEFORE_TIME): Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Delete file.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/timesize.h: New file.
|
|
RDTSCP waits until all previous instructions have executed and all
previous loads are globally visible before reading the counter. RDTSC
doesn't wait until all previous instructions have been executed before
reading the counter. All x86 processors since 2010 support RDTSCP
instruction. This patch adds RDTSCP support to benchtests.
* benchtests/Makefile (CPPFLAGS-nonlib): Add -DUSE_RDTSCP if
USE_RDTSCP is defined.
* sysdeps/x86/hp-timing.h (HP_TIMING_NOW): Use RDTSCP if
USE_RDTSCP is defined.
|
|
Th commit 'Disable TSX on some Haswell processors.' (2702856bf4) changed the
default flags for Haswell models. Previously, new models were handled by the
default switch path, which assumed a Core i3/i5/i7 if AVX is available. After
the patch, Haswell models (0x3f, 0x3c, 0x45, 0x46) do not set the flags
Fast_Rep_String, Fast_Unaligned_Load, Fast_Unaligned_Copy, and
Prefer_PMINUB_for_stringop (only the TSX one).
This patch fixes it by disentangle the TSX flag handling from the memory
optimization ones. The strstr case cited on patch now selects the
__strstr_sse2_unaligned as expected for the Haswell cpu.
Checked on x86_64-linux-gnu.
[BZ #23709]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set TSX bits
independently of other flags.
|
|
|
|
Linux 4.19 does not add any new syscalls (some existing ones are added
to more architectures); this patch updates the version number in
syscall-names.list to reflect that it's still current for 4.19.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/syscall-names.list: Update kernel
version to 4.19.
|
|
Use __builtin_ia32_rdtsc directly since including <x86intrin.h> makes
building glibc very slow. On Intel Core i5-6260U, this patch reduces
x86-64 build time from 8 minutes 33 seconds to 3 minutes 48 seconds
with "make -j4" and GCC 8.2.1.
* sysdeps/x86/hp-timing.h: Don't include <x86intrin.h>.
(HP_TIMING_NOW): Replace _rdtsc with __builtin_ia32_rdtsc.
|
|
|
|
* sysdeps/unix/sysv/linux/sparc/init-first.c: New file.
* sysdeps/unix/sysv/linux/sparc/libc-vdso.h: New file.
* sysdeps/unix/sysv/linux/sparc/Makefile: Add dl-vdso to
sysdep_routines in subdir elf.
* sysdeps/unix/sysv/linux/sparc/Versions: Add GLIBC_PRIVATE
version for __vdso_clock_gettime.
* sysdeps/unix/sysv/linux/sparc/sysdep.h (INTERNAL_VSYSCALL_CALL):
Define.
(HAVE_CLOCK_GETTIME_VSYSCALL): Define.
(HAVE_GETTIMEOFDAY_VSYSCALL): Define.
|
|
* sysdeps/sparc/fpu/libm-test-ulps: Regenerated.
|
|
Since _rdtsc intrinsic is supported in GCC 4.9, we can use it for
HP_TIMING_NOW. This patch
1. Create x86 hp-timing.h to replace i686 and x86_64 hp-timing.h.
2. Move MINIMUM_ISA from init-arch.h to isa.h so that x86 hp-timing.h
can check minimum x86 ISA to decide if _rdtsc can be used.
NB: Checking if __i686__ isn't sufficient since __i686__ may not be
defined when building for i686 class processors.
* sysdeps/i386/init-arch.h: Removed.
* sysdeps/i386/i586/init-arch.h: Likewise.
* sysdeps/i386/i686/init-arch.h: Likewise.
* sysdeps/i386/i686/hp-timing.h: Likewise.
* sysdeps/x86_64/hp-timing.h: Likewise.
* sysdeps/i386/isa.h: New file.
* sysdeps/i386/i586/isa.h: Likewise.
* sysdeps/i386/i686/isa.h: Likewise.
* sysdeps/x86_64/isa.h: Likewise.
* sysdeps/x86/hp-timing.h: New file.
* sysdeps/x86/init-arch.h: Include <isa.h>.
|
|
After my patch to move SHMLBA to its own header, the bits/shm.h
headers for architectures using the Linux kernel still vary in a few
ways: the use of __syscall_ulong_t; whether padding for 32-bit systems
is present before or after time fields, or missing altogether (mips,
x32); whether shm_segsz is before or after the time fields; whether,
if after time fields, there is extra padding before shm_segsz.
This patch arranges for a single header to be used. __syscall_ulong_t
is safe to use everywhere, while bits/shm-pad.h is added with new
macros __SHM_PAD_AFTER_TIME, __SHM_PAD_BEFORE_TIME,
__SHM_SEGSZ_AFTER_TIME and __SHM_PAD_BETWEEN_TIME_AND_SEGSZ to
describe the differences.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shm-pad.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shm-pad.h>.
(shmatt_t): Define as __syscall_ulong_t.
(__SHM_PAD_TIME): New macro, depending on [__SHM_PAD_BEFORE_TIME]
and [__SHM_PAD_AFTER_TIME].
(struct shmid_ds): Define time fields using __SHM_PAD_TIME.
Define shm_segsz and associated padding based on
[__SHM_SEGSZ_AFTER_TIME] and [__SHM_PAD_BETWEEN_TIME_AND_SEGSZ].
Use __syscall_ulong_t instead of unsigned long int.
[__USE_MISC] (struct shminfo): Use __syscall_ulong_t instead of
unsigned long int.
[__USE_MISC] (struct shm_info): Likewise.
* sysdeps/unix/sysv/linux/bits/shm-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Likewise.
|
|
One difference between bits/shm.h headers for architectures using the
Linux kernel is the definition of SHMLBA. This was noted in
<https://sourceware.org/ml/libc-alpha/2018-09/msg00175.html> as a
reason why even a new architecture (C-SKY) might need its own
bits/shm.h; thus, splitting it out of bits/shm.h can allow less
duplication of headers for new architectures.
This patch moves that definition to its own header, bits/shmlba.h, to
allow more sharing of headers between architectures. That move allows
the arm, ia64 and sh variants of bits/shm.h to be removed, as they had
no other significant differences from the generic bits/shm.h; powerpc
and x86 have their own bits/shm.h but do not need to get their own
bits/shmlba.h because they use the same SHMLBA as the generic header.
Other architectures with their own bits/shm.h get their own
bits/shmlba.h without being able to remove their own bits/shm.h until
the generic one has been adapted to be able to handle more
architectures (where, in addition to the differences seen for
bits/msq.h and bits/sem.h, the position of shm_segsz in struct
shmid_ds also depends on the architecture).
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/shmlba.h.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/hppa/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/mips/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
* sysdeps/unix/sysv/linux/powerpc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/sparc/bits/shm.h: Include
<bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getshmlba): Remove function declaration.
* sysdeps/unix/sysv/linux/x86/bits/shm.h: Include <bits/shmlba.h>.
(SHMLBA): Remove macro.
(__getpagesize): Remove function declaration.
* sysdeps/unix/sysv/linux/arm/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/ia64/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/bits/shmlba.h: New file.
* sysdeps/unix/sysv/linux/arm/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sh/bits/shmlba.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/shmlba.h: Likewise.
|
|
[BZ #23275]
The race leads either to pthread_mutex_destroy returning EBUSY
or triggering an assertion (See description in bugzilla).
This patch is fixing the race by ensuring that the elision path is
used in all cases if elision is enabled by the GLIBC_TUNABLES framework.
The __kind variable in struct __pthread_mutex_s is accessed concurrently.
Therefore we are now using the atomic macros.
The new testcase tst-mutex10 is triggering the race on s390x and intel.
Presumably also on power, but I don't have access to a power machine
with lock-elision. At least the code for power is the same as on the other
two architectures.
ChangeLog:
[BZ #23275]
* nptl/tst-mutex10.c: New File.
* nptl/Makefile (tests): Add tst-mutex10.
(tst-mutex10-ENV): New variable.
* sysdeps/unix/sysv/linux/s390/force-elision.h: (FORCE_ELISION):
Ensure that elision path is used if elision is available.
* sysdeps/unix/sysv/linux/powerpc/force-elision.h (FORCE_ELISION):
Likewise.
* sysdeps/unix/sysv/linux/x86/force-elision.h: (FORCE_ELISION):
Likewise.
* nptl/pthreadP.h (PTHREAD_MUTEX_TYPE, PTHREAD_MUTEX_TYPE_ELISION)
(PTHREAD_MUTEX_PSHARED): Use atomic_load_relaxed.
* nptl/pthread_mutex_consistent.c (pthread_mutex_consistent): Likewise.
* nptl/pthread_mutex_getprioceiling.c (pthread_mutex_getprioceiling):
Likewise.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full)
(__pthread_mutex_cond_lock_adjust): Likewise.
* nptl/pthread_mutex_setprioceiling.c (pthread_mutex_setprioceiling):
Likewise.
* nptl/pthread_mutex_timedlock.c (__pthread_mutex_timedlock): Likewise.
* nptl/pthread_mutex_trylock.c (__pthread_mutex_trylock): Likewise.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
* sysdeps/nptl/bits/thread-shared-types.h (struct __pthread_mutex_s):
Add comments.
* nptl/pthread_mutex_destroy.c (__pthread_mutex_destroy):
Use atomic_load_relaxed and atomic_store_relaxed.
* nptl/pthread_mutex_init.c (__pthread_mutex_init):
Use atomic_store_relaxed.
|
|
This removes all overrides of TIMEOUT that are less than or equal to the
default timeout.
|
|
|
|
Since aligned loads and stores are huge performance
advantage the implementation always tries to do aligned
access. Among the cases when src and dst addresses are
aligned or unaligned evenly there are cases of not evenly
unaligned src and dst. For such cases (if the length is
big enough) ext instruction is used to merge-and-shift
two memory chunks loaded from two adjacent aligned
locations and then the adjusted chunk gets stored to
aligned address.
Performance gain against the current T2 implementation:
memcpy-large: 65K-32M: +40% - +10%
memcpy-walk: 128-32M: +20% - +2%
|
|
The bits/sem.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* The x86 header uses padding after time fields unconditionally
(including for both x86_64 ABIs), not just for 32-bit time (unlike
in msqid_ds where there is only padding for 32-bit time). Because
this padding is present for x32, and is __syscall_ulong_t there, it
does have to be __syscall_ulong_t, not unsigned long int.
* The MIPS header never uses padding around time fields, even when
32-bit (unlike in msqid_ds where it has endian-dependent padding for
32-bit time).
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other differences, this patch adds macros __SEM_PAD_BEFORE_TIME and
__SEM_PAD_AFTER_TIME in a new bits/sem-pad.h header, so that header is
the only one needing to be provided on architectures with differences
in this area, and everything else can go in a single common bits/sem.h
header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/sem-pad.h.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/sem-pad.h>
instead of <bits/wordsize.h>.
(__SEM_PAD_TIME): New macro, depending on [__SEM_PAD_BEFORE_TIME]
and [__SEM_PAD_AFTER_TIME].
(struct semid_ds): Define time fields using __SEM_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/sem-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/sem.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/sem.h: Likewise.
|
|
The bits/msq.h headers for architectures using the Linux kernel vary
in a few ways:
* x32 uses __syscall_ulong_t instead of unsigned long int.
* x32 has 64-bit time_t, so no padding around time fields despite
__WORDSIZE == 32.
* Some older 32-bit big-endian architectures have padding before
rather than after time fields, although the preferred generic
approach is padding after the time fields independent of endianness.
(There are also insubstantial differences such as use of unsigned int
for padding instead of unsigned long int, which makes no difference to
layout since the padding fields using unsigned int are only present on
32-bit architectures.)
For the first, __syscall_ulong_t can be used in the generic version as
it's the same as unsigned long int everywhere except x32. For the
other two differences, this patch adds macros __MSQ_PAD_BEFORE_TIME
and __MSQ_PAD_AFTER_TIME in a new bits/msq-pad.h header, so that
header is the only one needing to be provided on architectures with
differences in this area, and everything else can go in a single
common bits/msq.h header. Once we have __TIMESIZE, the generic
bits/msq-pad.h can change to use that instead of __WORDSIZE, at which
point the x86 version of bits/msq-pad.h won't be needed either.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Add
bits/msq-pad.h.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/msq-pad.h>
instead of <bits/wordsize.h>.
(msgqnum_t): Define as __syscall_ulong_t.
(msglen_t): Likewise.
(__MSQ_PAD_TIME): New macro, depending on [__MSQ_PAD_BEFORE_TIME]
and [__MSQ_PAD_AFTER_TIME].
(struct msqid_ds): Define time fields using __MSQ_PAD_TIME. Use
__syscall_ulong_t instead of unsigned long int.
* sysdeps/unix/sysv/linux/bits/msq-pad.h: New file.
* sysdeps/unix/sysv/linux/hppa/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/mips/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq-pad.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/msq.h: Remove.
* sysdeps/unix/sysv/linux/mips/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/x86/bits/msq.h: Likewise.
|
|
sysdeps/unix/sysv/linux/bits/shm.h has padding after time fields in
struct shmid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/shm.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/shm.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha and s390
versions which are also no longer needed. The other
architecture-specific versions have different padding, layout, types
or SHMLBA definitions and so are still needed after this change.
This is essentially the same change for bits/shm.h as the bits/msq.h
patch and the bits/sem.h patch. However, the details of the padding
variations for the architectures that aren't changed are not all the
same between msqid_ds, shmid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/shm.h: Include <bits/wordsize.h>.
(struct shmid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/shm.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/shm.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/shm.h: Likewise.
|
|
sysdeps/unix/sysv/linux/bits/sem.h has padding after time fields in
struct semid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/sem.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/sem.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
This is essentially the same change for bits/sem.h as the bits/msq.h
patch. However, the details of the padding variations for the
architectures that aren't changed are not all the same between
msqid_ds and semid_ds.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/sem.h: Include <bits/wordsize.h>.
(struct semid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/sem.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/sem.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/sem.h: Likewise.
|
|
sysdeps/unix/sysv/linux/bits/msq.h has padding after time fields in
struct msqid_ds unconditionally, and thus is only suitable for 32-bit
architectures (no 64-bit configurations use this file);
sysdeps/unix/sysv/linux/generic/bits/msq.h is substantively the same,
except that the padding is conditioned on __WORDSIZE == 32, and so it
can be used for 64-bit architectures as well.
This patch adds the conditionals to
sysdeps/unix/sysv/linux/bits/msq.h. The linux/generic/ version is
then no longer needed and so is removed, as are the alpha, ia64 and
s390 versions which are also no longer needed. The other
architecture-specific versions have different padding or types and so
are still needed after this change.
Tested with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/msq.h: Include <bits/wordsize.h>.
(struct msqid_ds): Condition padding after time fields on
[__WORDSIZE == 32].
* sysdeps/unix/sysv/linux/alpha/bits/msq.h: Remove file.
* sysdeps/unix/sysv/linux/generic/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/msq.h: Likewise.
* sysdeps/unix/sysv/linux/s390/bits/msq.h: Likewise.
|
|
hppa currently has a bits/mman.h that does not include
bits/mman-linux.h, unlike all other architectures using the Linux
kernel. This sort of variation between architectures is generally
unhelpful when making global changes for new constants added to new
Linux kernel releases.
This patch changes hppa to use bits/mman-linux.h, overriding constants
with different values as necessary (including with #undef after
bits/mman.h inclusion when needed, as already done for alpha). While
there could possibly be further improvements through e.g. splitting
more sets of definitions into separate bits/ headers, I think this is
still an improvement on the current state. diffstat shows 27 lines
added, 51 deleted (and some of that is actually existing lines moving
to a different place in the file).
Tested with build-many-glibcs.py for hppa-linux-gnu.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h: Include
<bits/mman-linux.h>.
(PROT_READ): Don't define here.
(PROT_WRITE): Likewise.
(PROT_EXEC): Likewise.
(PROT_NONE): Likewise.
(PROT_GROWSDOWN): Likewise.
(PROT_GROWSUP): Likewise.
(MAP_SHARED): Likewise.
(MAP_PRIVATE): Likewise.
[__USE_MISC] (MAP_SHARED_VALIDATE): Likewise.
[__USE_MISC] (MAP_FILE): Likewise.
[__USE_MISC] (MAP_ANONYMOUS): Likewise.
[__USE_MISC] (MAP_ANON): Likewise.
[__USE_MISC] (MAP_HUGE_SHIFT): Likewise.
[__USE_MISC] (MAP_HUGE_MASK): Likewise.
(MCL_CURRENT): Likewise.
(MCL_FUTURE): Likewise.
(MCL_ONFAULT): Likewise.
[__USE_MISC] (MADV_NORMAL): Likewise.
[__USE_MISC] (MADV_RANDOM): Likewise.
[__USE_MISC] (MADV_SEQUENTIAL): Likewise.
[__USE_MISC] (MADV_WILLNEED): Likewise.
[__USE_MISC] (MADV_DONTNEED): Likewise.
[__USE_MISC] (MADV_FREE): Likewise.
[__USE_MISC] (MADV_REMOVE): Likewise.
[__USE_MISC] (MADV_DONTFORK): Likewise.
[__USE_MISC] (MADV_DOFORK): Likewise.
[__USE_MISC] (MADV_HWPOISON): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_NORMAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_RANDOM): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_SEQUENTIAL): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_WILLNEED): Likewise.
[__USE_XOPEN2K] (POSIX_MADV_DONTNEED): Likewise.
(__MAP_ANONYMOUS): New macro.
[__USE_MISC] (MAP_TYPE): Undefine and redefine after
<bits/mman-linux.h> inclusion.
(MAP_FIXED): Likewise.
(MS_SYNC): Likewise.
(MS_ASYNC): Likewise.
(MS_INVALIDATE): Likewise.
[__USE_MISC] (MADV_MERGEABLE): Likewise.
[__USE_MISC] (MADV_UNMERGEABLE): Likewise.
[__USE_MISC] (MADV_HUGEPAGE): Likewise.
[__USE_MISC] (MADV_NOHUGEPAGE): Likewise.
[__USE_MISC] (MADV_DONTDUMP): Likewise.
[__USE_MISC] (MADV_DODUMP): Likewise.
[__USE_MISC] (MADV_WIPEONFORK): Likewise.
[__USE_MISC] (MADV_KEEPONFORK): Likewise.
|
|
The redirection of built-in functions such as sqrt in include/math.h
applies when the wrappers for those functions in libnldbl_nonshared.a
are built, resulting in references to internal names such as
__ieee754_sqrt that aren't actually exported from the shared libm.
(This applies for sqrt in 2.28, also for the round-to-integer
functions in current master because of my changes there.) This patch
arranges for NO_MATH_REDIRECT to be used for all the affected
functions, and adds a test for those functions in
libnldbl_nonshared.a.
(We could of course choose to obsolete libnldbl_nonshared.a and
require that people building with -mlong-double-64 either include the
relevant headers and have a compiler supporting asm redirection, or
have some other means of achieving that redirection at compile time if
not including those headers. But while we have libnldbl_nonshared.a,
it seems appropriate to fix such bugs in it.)
Tested for powerpc, and with build-many-glibcs.py.
[BZ #23735]
* sysdeps/ieee754/ldbl-opt/nldbl-compat.h (NO_MATH_REDIRECT):
Define.
* sysdeps/ieee754/ldbl-opt/test-nldbl-redirect.c: New file.
* sysdeps/ieee754/ldbl-opt/Makefile [$(subdir) = math] (tests):
Add test-nldbl-redirect.
[$(subdir) = math] (CFLAGS-test-nldbl-redirect.c): New variable.
[$(subdir) = math] ($(objpfx)test-nldbl-redirect): Depend on
$(objpfx)libnldbl_nonshared.a.
|
|
* with -O, -O1, -Os it fails with:
In file included from ../soft-fp/soft-fp.h:318,
from ../sysdeps/ieee754/soft-fp/s_fdiv.c:28:
../sysdeps/ieee754/soft-fp/s_fdiv.c: In function '__fdiv':
../soft-fp/op-2.h:98:25: error: 'R_f1' may be used uninitialized in this function [-Werror=maybe-uninitialized]
X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f1' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:36: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
../soft-fp/op-2.h:101:17: error: 'R_f0' may be used uninitialized in this function [-Werror=maybe-uninitialized]
: (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
^~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:14: note: 'R_f0' was declared here
FP_DECL_D (R);
^
../soft-fp/op-2.h:37:14: note: in definition of macro '_FP_FRAC_DECL_2'
_FP_W_TYPE X##_f0 _FP_ZERO_INIT, X##_f1 _FP_ZERO_INIT
^
../soft-fp/double.h:95:24: note: in expansion of macro '_FP_DECL'
# define FP_DECL_D(X) _FP_DECL (2, X)
^~~~~~~~
../sysdeps/ieee754/soft-fp/s_fdiv.c:38:3: note: in expansion of macro 'FP_DECL_D'
FP_DECL_D (R);
^~~~~~~~~
Build tested with Yocto for ARM, AARCH64, X86, X86_64, PPC, MIPS, MIPS64
with -O, -O1, -Os.
For AARCH64 it needs one more fix in locale for -Os.
[BZ #19444]
* sysdeps/ieee754/soft-fp/s_fdiv.c: Include <libc-diag.h> and use
DIAG_PUSH_NEEDS_COMMENT, DIAG_IGNORE_NEEDS_COMMENT and
DIAG_POP_NEEDS_COMMENT to disable -Wmaybe-uninitialized.
|
|
* sysdeps/unix/sysv/linux/fd_to_filename.h: Add missing includes.
|
|
Since RTM intrinsics are supported in GCC 4.9, we can use them in
pthread mutex lock elision.
* sysdeps/unix/sysv/linux/x86/Makefile (CFLAGS-elision-lock.c):
Add -mrtm.
(CFLAGS-elision-unlock.c): Likewise.
(CFLAGS-elision-timed.c): Likewise.
(CFLAGS-elision-trylock.c): Likewise.
* sysdeps/unix/sysv/linux/x86/hle.h: Rewritten.
|
|
As POSIX states [1] a freopen call should first flush the stream as if by a
call fflush. C99 (n1256) and C11 (n1570) only states the function should
first close any file associated with the specific stream. Although current
implementation only follow C specification, current BSD and other libc
implementation (musl) are in sync with POSIX and fflush the stream.
This patch change freopen{64} to fflush the stream before actually reopening
it (or returning if the stream does not support reopen). It also changes the
Linux implementation to avoid a dynamic allocation on 'fd_to_filename'.
Checked on x86_64-linux-gnu.
[BZ #21037]
* libio/Makefile (tests): Add tst-memstream4 and tst-wmemstream4.
* libio/freopen.c (freopen): Sync stream before reopen and adjust to
new fd_to_filename interface.
* libio/freopen64.c (freopen64): Likewise.
* libio/tst-memstream.h: New file.
* libio/tst-memstream4.c: Likewise.
* libio/tst-wmemstream4.c: Likewise.
* sysdeps/generic/fd_to_filename.h (fd_to_filename): Change signature.
* sysdeps/unix/sysv/linux/fd_to_filename.h (fd_to_filename): Likewise
and remove internal dynamic allocation.
[1] http://pubs.opengroup.org/onlinepubs/9699919799/
|
|
The MREMAP_* flags are identical between bits/mman-linux.h and the
hppa bits/mman.h; thus, they should be in bits/mman-shared.h instead
to avoid unnecessary duplication. This patch moves them there.
Tested for x86_64, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-linux.h [__USE_GNU]
(MREMAP_MAYMOVE): Do not define here.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/bits/mman-shared.h [__USE_GNU]
(MREMAP_MAYMOVE): Define here instead.
[__USE_GNU] (MREMAP_FIXED): Likewise.
* sysdeps/unix/sysv/linux/hppa/bits/mman.h [__USE_GNU]
(MREMAP_MAYMOVE): Remove.
[__USE_GNU] (MREMAP_FIXED): Likewise.
|
|
After my changes to move various macros, inlines and other content
from math_private.h to more specific headers, many files including
math_private.h no longer need to do so. Furthermore, since the
optimized inlines of various functions have been moved to
include/fenv.h or replaced by use of function names GCC inlines
automatically, a missing math_private.h include where one is
appropriate will reliably cause a build failure rather than possibly
causing code to be less well optimized while still building
successfully. Thus, this patch removes includes of math_private.h
that are now unnecessary. In the case of two RISC-V files, the
include is replaced by one of stdbool.h because the files in question
were relying on math_private.h to get a definition of bool.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* math/fromfp.h: Do not include <math_private.h>.
* math/s_cacosh_template.c: Likewise.
* math/s_casin_template.c: Likewise.
* math/s_casinh_template.c: Likewise.
* math/s_ccos_template.c: Likewise.
* math/s_cproj_template.c: Likewise.
* math/s_fdim_template.c: Likewise.
* math/s_fmaxmag_template.c: Likewise.
* math/s_fminmag_template.c: Likewise.
* math/s_iseqsig_template.c: Likewise.
* math/s_ldexp_template.c: Likewise.
* math/s_nextdown_template.c: Likewise.
* math/w_log1p_template.c: Likewise.
* math/w_scalbln_template.c: Likewise.
* sysdeps/aarch64/fpu/feholdexcpt.c: Likewise.
* sysdeps/aarch64/fpu/fesetround.c: Likewise.
* sysdeps/aarch64/fpu/fgetexcptflg.c: Likewise.
* sysdeps/aarch64/fpu/ftestexcept.c: Likewise.
* sysdeps/aarch64/fpu/s_llrint.c: Likewise.
* sysdeps/aarch64/fpu/s_llrintf.c: Likewise.
* sysdeps/aarch64/fpu/s_lrint.c: Likewise.
* sysdeps/aarch64/fpu/s_lrintf.c: Likewise.
* sysdeps/i386/fpu/s_atanl.c: Likewise.
* sysdeps/i386/fpu/s_f32xaddf64.c: Likewise.
* sysdeps/i386/fpu/s_f32xsubf64.c: Likewise.
* sysdeps/i386/fpu/s_fdim.c: Likewise.
* sysdeps/i386/fpu/s_logbl.c: Likewise.
* sysdeps/i386/fpu/s_rintl.c: Likewise.
* sysdeps/i386/fpu/s_significandl.c: Likewise.
* sysdeps/ia64/fpu/s_matherrf.c: Likewise.
* sysdeps/ia64/fpu/s_matherrl.c: Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c: Likewise.
* sysdeps/ieee754/dbl-64/s_cbrt.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fmaf.c: Likewise.
* sysdeps/ieee754/flt-32/s_cbrtf.c: Likewise.
* sysdeps/ieee754/k_standardf.c: Likewise.
* sysdeps/ieee754/k_standardl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_copysignl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_finitel.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_fpclassifyl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isinfl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_isnanl.c: Likewise.
* sysdeps/ieee754/ldbl-64-128/s_signbitl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_cbrtl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c: Likewise.
* sysdeps/ieee754/s_signgam.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c: Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c: Likewise.
* sysdeps/powerpc/power7/fpu/s_logbf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_ceil.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_nearbyint.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_roundeven.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_trunc.c: Likewise.
* sysdeps/riscv/rvd/s_finite.c: Likewise.
* sysdeps/riscv/rvd/s_fmax.c: Likewise.
* sysdeps/riscv/rvd/s_fmin.c: Likewise.
* sysdeps/riscv/rvd/s_fpclassify.c: Likewise.
* sysdeps/riscv/rvd/s_isinf.c: Likewise.
* sysdeps/riscv/rvd/s_isnan.c: Likewise.
* sysdeps/riscv/rvd/s_issignaling.c: Likewise.
* sysdeps/riscv/rvf/fegetround.c: Likewise.
* sysdeps/riscv/rvf/feholdexcpt.c: Likewise.
* sysdeps/riscv/rvf/fesetenv.c: Likewise.
* sysdeps/riscv/rvf/fesetround.c: Likewise.
* sysdeps/riscv/rvf/feupdateenv.c: Likewise.
* sysdeps/riscv/rvf/fgetexcptflg.c: Likewise.
* sysdeps/riscv/rvf/ftestexcept.c: Likewise.
* sysdeps/riscv/rvf/s_ceilf.c: Likewise.
* sysdeps/riscv/rvf/s_finitef.c: Likewise.
* sysdeps/riscv/rvf/s_floorf.c: Likewise.
* sysdeps/riscv/rvf/s_fmaxf.c: Likewise.
* sysdeps/riscv/rvf/s_fminf.c: Likewise.
* sysdeps/riscv/rvf/s_fpclassifyf.c: Likewise.
* sysdeps/riscv/rvf/s_isinff.c: Likewise.
* sysdeps/riscv/rvf/s_isnanf.c: Likewise.
* sysdeps/riscv/rvf/s_issignalingf.c: Likewise.
* sysdeps/riscv/rvf/s_nearbyintf.c: Likewise.
* sysdeps/riscv/rvf/s_roundevenf.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/riscv/rvf/s_truncf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_rint.c: Include <stdbool.h> instead of
<math_private.h>.
* sysdeps/riscv/rvf/s_rintf.c: Likewise.
|
|
When elf_machine_runtime_setup is called to set up resolver, it should
use _dl_runtime_resolve_shstk or _dl_runtime_profile_shstk if SHSTK is
enabled by kernel.
Tested on i686 with and without --enable-cet as well as on CET emulator
with --enable-cet.
[BZ #23716]
* sysdeps/i386/dl-cet.c: Removed.
* sysdeps/i386/dl-machine.h (_dl_runtime_resolve_shstk): New
prototype.
(_dl_runtime_profile_shstk): Likewise.
(elf_machine_runtime_setup): Use _dl_runtime_profile_shstk or
_dl_runtime_resolve_shstk if SHSTK is enabled by kernel.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
|
|
The fallback code of Linux wrapper for preadv2/pwritev2 executes
regardless of the errno code for preadv2, instead of the case where
the syscall is not supported.
This fixes it by calling the fallback code iff errno is ENOSYS. The
patch also adds tests for both invalid file descriptor and invalid
iov_len and vector count.
The only discrepancy between preadv2 and fallback code regarding
error reporting is when an invalid flags are used. The fallback code
bails out earlier with ENOTSUP instead of EINVAL/EBADF when the syscall
is used.
Checked on x86_64-linux-gnu on a 4.4.0 and 4.15.0 kernel.
[BZ #23579]
* misc/tst-preadvwritev2-common.c (do_test_with_invalid_fd): New
test.
* misc/tst-preadvwritev2.c, misc/tst-preadvwritev64v2.c (do_test):
Call do_test_with_invalid_fd.
* sysdeps/unix/sysv/linux/preadv2.c (preadv2): Use fallback code iff
errno is ENOSYS.
* sysdeps/unix/sysv/linux/preadv64v2.c (preadv64v2): Likewise.
* sysdeps/unix/sysv/linux/pwritev2.c (pwritev2): Likewise.
* sysdeps/unix/sysv/linux/pwritev64v2.c (pwritev64v2): Likewise.
|
|
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __copysign functions to call
the corresponding copysign names instead, with asm redirection to
__copysign when the calls are not inlined (all cases are inlined
except for IBM long double for powerpc soft-float / e500v1). This
eliminates the need for an inline function defining __copysign in
terms of __builtin_copysign.
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT]
(MATH_REDIRECT_BINARY_ARGS): New macro.
[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
&& !NO_MATH_REDIRECT] (copysign): Redirect using MATH_REDIRECT.
* sysdeps/alpha/fpu/s_copysign.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/alpha/fpu/s_copysignf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_copysign.c: Likewise.
* sysdeps/ieee754/float128/s_copysignf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_copysignf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_copysignl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_copysignl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_copysignl.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysign.c:
Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_copysignf.c:
Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysign.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_copysignf.c: Likewise.
* sysdeps/riscv/rvd/s_copysign.c: Likewise.
* sysdeps/riscv/rvf/s_copysignf.c: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_copysign.c:
Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_copysignf.c:
Likewise.
* sysdeps/generic/math_private_calls.h
[!__MATH_DECLARING_LONG_DOUBLE || !NO_LONG_DOUBLE] (__copysign):
Do not declare and define as an inline function.
* math/divtc3.c (__divtc3): Use copysign functions instead of
__copysign variants.
* math/multc3.c (__multc3): Likewise.
* sysdeps/generic/math-type-macros.h (M_COPYSIGN): Likewise.
* sysdeps/ieee754/dbl-64/e_atan2.c (signArctan2): Likewise.
* sysdeps/ieee754/dbl-64/e_atanh.c (__ieee754_atanh): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r):
Likewise.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
(__ieee754_yn): Likewise.
* sysdeps/ieee754/dbl-64/s_asinh.c (__asinh): Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c (__signArctan): Likewise.
* sysdeps/ieee754/dbl-64/s_scalbln.c (__scalbln): Likewise.
* sysdeps/ieee754/dbl-64/s_scalbn.c (__scalbn): Likewise.
* sysdeps/ieee754/dbl-64/s_sin.c (do_sin): Likewise.
(__sin): Likewise.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_nearbyint.c (__nearbyint):
Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_scalbln.c (__scalbln):
Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_scalbn.c (__scalbn):
Likewise.
* sysdeps/ieee754/flt-32/e_atanhf.c (__ieee754_atanhf): Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
(__ieee754_ynf): Likewise.
* sysdeps/ieee754/flt-32/s_asinhf.c (__asinhf): Likewise.
* sysdeps/ieee754/flt-32/s_scalbnf.c (__scalbnf): Likewise.
* sysdeps/ieee754/k_standard.c (__kernel_standard): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128/s_scalblnl.c (__scalblnl): Likewise.
* sysdeps/ieee754/ldbl-128/s_scalbnl.c (__scalbnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fmal.c (__fmal): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl)
* sysdeps/ieee754/ldbl-96/s_asinhl.c (__asinhl): Likewise.
* sysdeps/ieee754/ldbl-96/s_scalblnl.c (__scalblnl): Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-copysign.c (copysignl): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
|
|
Continuing the move to use, within libm, public names for libm
functions that can be inlined as built-in functions on many
architectures, this patch moves calls to __round functions to call the
corresponding round names instead, with asm redirection to __round
when the calls are not inlined.
An additional complication arises in
sysdeps/ieee754/ldbl-128ibm/e_expl.c, where a call to roundl, with the
result converted to int, gets converted by the compiler to call
lroundl in the case of 32-bit long, so resulting in localplt test
failures. It's logically correct to let the compiler make such an
optimization; an appropriate asm redirection of lroundl to __lroundl
is thus added to that file (it's not needed anywhere else).
Tested for x86_64, and with build-many-glibcs.py.
* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (round): Redirect
using MATH_REDIRECT.
* sysdeps/aarch64/fpu/s_round.c: Define NO_MATH_REDIRECT before
header inclusion.
* sysdeps/aarch64/fpu/s_roundf.c: Likewise.
* sysdeps/ieee754/dbl-64/s_round.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c: Likewise.
* sysdeps/ieee754/float128/s_roundf128.c: Likewise.
* sysdeps/ieee754/flt-32/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_roundl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_roundl.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_round.c: Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/s_roundf.c: Likewise.
* sysdeps/riscv/rv64/rvd/s_round.c: Likewise.
* sysdeps/riscv/rvf/s_roundf.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundl.c: Likewise.
(round): Redirect to __round.
(__roundl): Call round instead of __round.
* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__round):
Remove macro.
[_ARCH_PWR5X] (__roundf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Use round
functions instead of __round variants.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive):
Likewise.
* sysdeps/x86/fpu/powl_helper.c (__powl_helper): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_expl.c (lroundl): Redirect to
__lroundl.
(__ieee754_expl): Call roundl instead of __roundl.
|
|
|
|
Continuing bits/mman.h unification between architectures using the
Linux kernel, this patch arranges for the common set of MAP_* flags to
be used by two more architectures. That common set is moved to
bits/mman-map-flags-generic.h, which is included by bits/mman.h, to
allow architectures to use that common set even if they also have
architecture-specific additions to it. As well as the generic
bits/mman.h, the versions for x86 and ia64 are also then made to
include bits/mman-map-flags-generic.h, so while they still need
architecture-specific bits/mman.h (for MAP_32BIT and MAP_GROWSUP
respectively), they do not need to duplicate the generic flag
definitions in there.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/bits/mman-map-flags-generic.h: New
file. Most contents moved from ....
* sysdeps/unix/sysv/linux/bits/mman.h: ... here. Move contents to
and include <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/mman-map-flags-generic.h.
* sysdeps/unix/sysv/linux/ia64/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_GROWSUP): Only define this macro, not other
macros defined in <bits/mman-map-flags-generic.h>.
* sysdeps/unix/sysv/linux/x86/bits/mman.h: Include
<bits/mman-map-flags-generic.h>.
[__USE_MISC] (MAP_32BIT): Only define this macro, not other macros
defined in <bits/mman-map-flags-generic.h>.
|
|
This patch completes the process of unifying sys/procfs.h headers for
architectures using the Linux kernel by making alpha use the generic
version.
That was previously deferred because alpha has different definitions
of prgregset_t and prfpregset_t from other architectures, so changing
to the common definitions would change C++ name mangling. To avoid
such a change, a header bits/procfs-prregset.h is added, and alpha
gets its own version of that header.
Tested for x86_64 and x86, and with build-many-glibcs.py.
* sysdeps/unix/sysv/linux/sys/procfs.h: Include
<bits/procfs-prregset.h>.
(prgregset_t): Define using __prgregset_t.
(prfpregset_t): Define using __prfpregset_t.
* sysdeps/unix/sysv/linux/Makefile [$(subdir) = misc]
(sysdep_headers): Add bits/procfs-prregset.h.
* sysdeps/unix/sysv/linux/bits/procfs-prregset.h: New file.
* sysdeps/unix/sysv/linux/alpha/bits/procfs-prregset.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/procfs.h: Likewise.
* sysdeps/unix/sysv/linux/alpha/sys/procfs.h: Remove file.
|