Age | Commit message (Collapse) | Author |
|
(CVE-2019-19126) [BZ #25204]
The problem was introduced in glibc 2.23, in commit
b9eb92ab05204df772eb4929eccd018637c9f3e9
("Add Prefer_MAP_32BIT_EXEC to map executable pages with MAP_32BIT").
(cherry picked from commit d5dfad4326fc683c813df1e37bbf5cf920591c8e)
|
|
Linux/Mips kernels prior to 4.8 could potentially crash the user
process when doing FPU emulation while running on non-executable
user stack.
Currently, gcc doesn't emit .note.GNU-stack for mips, but that will
change in the future. To ensure that glibc can be used with such
future gcc, without silently resulting in binaries that might crash
in runtime, this patch forces RWX stack for all built objects if
configured to run against minimum kernel version less than 4.8.
* sysdeps/unix/sysv/linux/mips/Makefile
(test-xfail-check-execstack):
Move under mips-has-gnustack != yes.
(CFLAGS-.o*, ASFLAGS-.o*): New rules.
Apply -Wa,-execstack if mips-force-execstack == yes.
* sysdeps/unix/sysv/linux/mips/configure: Regenerated.
* sysdeps/unix/sysv/linux/mips/configure.ac
(mips-force-execstack): New var.
Set to yes for hard-float builds with minimum_kernel < 4.8.0
or minimum_kernel not set at all.
(mips-has-gnustack): New var.
Use value of libc_cv_as_noexecstack
if mips-force-execstack != yes, otherwise set to no.
(cherry picked from commit 33bc9efd91de1b14354291fc8ebd5bce96379f12)
|
|
Since the size argument is unsigned. we should use unsigned Jcc
instructions, instead of signed, to check size.
Tested on x86-64 and x32, with and without --disable-multi-arch.
[BZ #24155]
CVE-2019-7309
* NEWS: Updated for CVE-2019-7309.
* sysdeps/x86_64/memcmp.S: Use RDX_LP for size. Clear the
upper 32 bits of RDX register for x32. Use unsigned Jcc
instructions, instead of signed.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memcmp-2.
* sysdeps/x86_64/x32/tst-size_t-memcmp-2.c: New test.
(cherry picked from commit 3f635fb43389b54f682fc9ed2acc0b2aaf4a923d)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes strnlen/wcsnlen for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/strlen.S: Use RSI_LP for length.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-strnlen.
* sysdeps/x86_64/x32/tst-size_t-strnlen.c: New file.
(cherry picked from commit 5165de69c0908e28a380cbd4bb054e55ea4abc95)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes strncpy for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/strcpy-sse2-unaligned.S: Use RDX_LP
for length.
* sysdeps/x86_64/multiarch/strcpy-ssse3.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-strncpy.
* sysdeps/x86_64/x32/tst-size_t-strncpy.c: New file.
(cherry picked from commit c7c54f65b080affb87a1513dee449c8ad6143c8b)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes the strncmp family for x32. Tested on x86-64 and x32.
On x86-64, libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/strcmp-sse42.S: Use RDX_LP for length.
* sysdeps/x86_64/strcmp.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-strncasecmp,
tst-size_t-strncmp and tst-size_t-wcsncmp.
* sysdeps/x86_64/x32/tst-size_t-strncasecmp.c: New file.
* sysdeps/x86_64/x32/tst-size_t-strncmp.c: Likewise.
* sysdeps/x86_64/x32/tst-size_t-wcsncmp.c: Likewise.
(cherry picked from commit ee915088a0231cd421054dbd8abab7aadf331153)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memset/wmemset for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S: Use
RDX_LP for length. Clear the upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memset.
* sysdeps/x86_64/x32/tst-size_t-memset.c: New file.
(cherry picked from commit 82d0b4a4d76db554eb6757acb790fcea30b19965)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memrchr for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/memrchr.S: Use RDX_LP for length.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memrchr.
* sysdeps/x86_64/x32/tst-size_t-memrchr.c: New file.
(cherry picked from commit ecd8b842cf37ea112e59cd9085ff1f1b6e208ae0)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memcpy for x32. Tested on x86-64 and x32. On x86-64,
libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/memcpy-ssse3-back.S: Use RDX_LP for
length. Clear the upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memcpy-ssse3.S: Likewise.
* sysdeps/x86_64/multiarch/memmove-avx512-no-vzeroupper.S:
Likewise.
* sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S:
Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memcpy.
tst-size_t-wmemchr.
* sysdeps/x86_64/x32/tst-size_t-memcpy.c: New file.
(cherry picked from commit 231c56760c1e2ded21ad96bbb860b1f08c556c7a)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memcmp/wmemcmp for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/multiarch/memcmp-sse4.S: Use RDX_LP for length.
Clear the upper 32 bits of RDX register.
* sysdeps/x86_64/multiarch/memcmp-ssse3.S: Likewise.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memcmp and
tst-size_t-wmemcmp.
* sysdeps/x86_64/x32/tst-size_t-memcmp.c: New file.
* sysdeps/x86_64/x32/tst-size_t-wmemcmp.c: Likewise.
(cherry picked from commit b304fc201d2f6baf52ea790df8643e99772243cd)
|
|
On x32, the size_t parameter may be passed in the lower 32 bits of a
64-bit register with the non-zero upper 32 bits. The string/memory
functions written in assembly can only use the lower 32 bits of a
64-bit register as length or must clear the upper 32 bits before using
the full 64-bit register for length.
This pach fixes memchr/wmemchr for x32. Tested on x86-64 and x32. On
x86-64, libc.so is the same with and withou the fix.
[BZ #24097]
CVE-2019-6488
* sysdeps/x86_64/memchr.S: Use RDX_LP for length. Clear the
upper 32 bits of RDX register.
* sysdeps/x86_64/x32/Makefile (tests): Add tst-size_t-memchr.
* sysdeps/x86_64/x32/test-size_t.h: New file.
* sysdeps/x86_64/x32/tst-size_t-memchr.c: Likewise.
(cherry picked from commit 97700a34f36721b11a754cf37a1cc40695ece1fd)
|
|
The commit documents the ownership rules around 'struct pthread' and
when a thread can read or write to the descriptor. With those ownership
rules in place it becomes obvious that pd->stopped_start should not be
touched in several of the paths during thread startup, particularly so
for detached threads. In the case of detached threads, between the time
the thread is created by the OS kernel and the creating thread checks
pd->stopped_start, the detached thread might have already exited and the
memory for pd unmapped. As a regression test we add a simple test which
exercises this exact case by quickly creating detached threads with
large enough stacks to ensure the thread stack cache is bypassed and the
stacks are unmapped. Before the fix the testcase segfaults, after the
fix it works correctly and completes without issue.
For a detailed discussion see:
https://www.sourceware.org/ml/libc-alpha/2017-01/msg00505.html
(cherry picked from commit f8bf15febcaf137bbec5a61101e88cd5a9d56ca8)
|
|
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit 08c6e95234c60a5c2f37532d1111acf084f39345)
|
|
Disabling lazy binding reduces stack usage during unwinding.
Note that RTLD_NOW only makes a difference if libgcc.so has not
already been loaded, so this is only a partial fix.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit f993b8754080ac7572b692870e926d8b493db16c)
|
|
When compiled as mempcpy, the return value is the end of the destination
buffer, thus it cannot be used to refer to the start of it.
(cherry picked from commit 9aaaab7c6e4176e61c59b0a63c6ba906d875dc0e)
|
|
[BZ #22644]
* sysdeps/i386/i686/multiarch/memcpy-sse2-unaligned.S: Fixed
branch conditions.
* string/test-memmove.c (do_test2): New testcase.
(cherry picked from commit cd66c0e584c6d692bc8347b5e72723d02b8a8ada)
|
|
If glibc is built with gcc 8 and -march=z900,
the testcase posix/tst-spawn4-compat crashes with a segfault.
In function maybe_script_execute, the new_argv array is dynamically
initialized on stack with (argc + 1) elements.
The function wants to add _PATH_BSHELL as the first argument
and writes out of bounds of new_argv.
There is an off-by-one because maybe_script_execute fails to count
the terminating NULL when sizing new_argv.
ChangeLog:
* sysdeps/unix/sysv/linux/spawni.c (maybe_script_execute):
Increment size of new_argv by one.
(cherry picked from commit 28669f86f6780a18daca264f32d66b1428c9c6f1)
|
|
_dl_runtime_profile calls _dl_call_pltexit, passing a pointer to
La_x86_64_retval which is allocated on stack. The lrv_vector0
field in La_x86_64_retval must be aligned to size of vector register.
When allocating stack space for La_x86_64_retval, we need to make sure
that the address of La_x86_64_retval + RV_VECTOR0_OFFSET is aligned to
VEC_SIZE. This patch checks the alignment of the lrv_vector0 field
and pads the stack space if needed.
Tested with x32 and x86-64 on SSE4, AVX and AVX512 machines. It fixed
FAIL: elf/tst-audit10
FAIL: elf/tst-audit4
FAIL: elf/tst-audit5
FAIL: elf/tst-audit6
FAIL: elf/tst-audit7
on x32 AVX512 machine.
(cherry picked from commit 207a72e2988c6d6343f50fe0128eb4fc4edfdd15)
[BZ #22715]
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_profile): Properly
align La_x86_64_retval to VEC_SIZE.
|
|
This patch syncs posix/glob.c implementation with gnulib version
b5ec983 (glob: simplify symlink detection). The only difference
to gnulib code is
* DT_UNKNOWN, DT_DIR, and DT_LNK definition in the case there
were not already defined. Gnulib code which uses
HAVE_STRUCT_DIRENT_D_TYPE will redefine them wrongly because
GLIBC does not define HAVE_STRUCT_DIRENT_D_TYPE. Instead
the patch check for each definition instead.
Also, the patch requires additional globfree and globfree64 files
for compatibility version on some architectures. Also the code
simplification leads to not macro simplification (not need for
NO_GLOB_PATTERN_P anymore).
Checked on x86_64-linux-gnu and on a build using build-many-glibcs.py
for all major architectures.
[BZ #1062]
* posix/Makefile (routines): Add globfree, globfree64, and
glob_pattern_p.
* posix/flexmember.h: New file.
* posix/glob_internal.h: Likewise.
* posix/glob_pattern_p.c: Likewise.
* posix/globfree.c: Likewise.
* posix/globfree64.c: Likewise.
* sysdeps/gnu/globfree64.c: Likewise.
* sysdeps/unix/sysv/linux/alpha/globfree.c: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/globfree64.c: Likewise.
* sysdeps/unix/sysv/linux/oldglob.c: Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/globfree64.c: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/globfree.c: Likewise.
* sysdeps/wordsize-64/globfree.c: Likewise.
* sysdeps/wordsize-64/globfree64.c: Likewise.
* posix/glob.c (HAVE_CONFIG_H): Use !_LIBC instead.
[NDEBUG): Remove comments.
(GLOB_ONLY_P, _AMIGA, VMS): Remove define.
(dirent_type): New type. Use uint_fast8_t not
uint8_t, as C99 does not require uint8_t.
(DT_UNKNOWN, DT_DIR, DT_LNK): New macros.
(struct readdir_result): Use dirent_type. Do not define skip_entry
unless it is needed; this saves a byte on platforms lacking d_ino.
(readdir_result_type, readdir_result_skip_entry):
New functions, replacing ...
(readdir_result_might_be_symlink, readdir_result_might_be_dir):
these functions, which were removed. This makes the callers
easier to read. All callers changed.
(D_INO_TO_RESULT): Now empty if there is no d_ino.
(size_add_wrapv, glob_use_alloca): New static functions.
(glob, glob_in_dir): Check for size_t overflow in several places,
and fix some size_t checks that were not quite right.
Remove old code using SHELL since Bash no longer
uses this.
(glob, prefix_array): Separate MS code better.
(glob_in_dir): Remove old Amiga and VMS code.
(globfree, __glob_pattern_type, __glob_pattern_p): Move to
separate files.
(glob_in_dir): Do not rely on undefined behavior in accessing
struct members beyond their bounds. Use a flexible array member
instead
(link_stat): Rename from link_exists2_p and return -1/0 instead of
0/1. Caller changed.
(glob): Fix memory leaks.
* posix/glob64 (globfree64): Move to separate file.
* sysdeps/gnu/glob64.c (NO_GLOB_PATTERN_P): Remove define.
(globfree64): Remove hidden alias.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_routines): Add
oldglob.
* sysdeps/unix/sysv/linux/alpha/glob.c (__new_globfree): Move to
separate file.
* sysdeps/unix/sysv/linux/i386/glob64.c (NO_GLOB_PATTERN_P): Remove
define.
Move compat code to separate file.
* sysdeps/wordsize-64/glob.c (globfree): Move definitions to
separate file.
(cherry picked from commit c66c908230169c1bab1f83b071eb585baa214b9f)
|
|
Hide internal __old_glob64 function to allow direct access within
libc.so and libc.a without using GOT nor PLT.
[BZ #18822]
* sysdeps/unix/sysv/linux/i386/glob64.c (__old_glob64): Add
libc_hidden_proto and libc_hidden_def.
(cherry picked from commit 2585d7b839559e665d5723734862fbe62264b25d)
(cherry picked from commit 2b54f16a8a237a1f3e6f8b974cafda09ed75d292)
|
|
In _dl_runtime_resolve, use fxsave/xsave/xsavec to preserve all vector,
mask and bound registers. It simplifies _dl_runtime_resolve and supports
different calling conventions. ld.so code size is reduced by more than
1 KB. However, use fxsave/xsave/xsavec takes a little bit more cycles
than saving and restoring vector and bound registers individually.
Latency for _dl_runtime_resolve to lookup the function, foo, from one
shared library plus libc.so:
Before After Change
Westmere (SSE)/fxsave 345 866 151%
IvyBridge (AVX)/xsave 420 643 53%
Haswell (AVX)/xsave 713 1252 75%
Skylake (AVX+MPX)/xsavec 559 719 28%
Skylake (AVX512+MPX)/xsavec 145 272 87%
Ryzen (AVX)/xsavec 280 553 97%
This is the worst case where portion of time spent for saving and
restoring registers is bigger than majority of cases. With smaller
_dl_runtime_resolve code size, overall performance impact is negligible.
On IvyBridge, differences in build and test time of binutils with lazy
binding GCC and binutils are noises. On Westmere, differences in
bootstrap and "makc check" time of GCC 7 with lazy binding GCC and
binutils are also noises.
[BZ #21265]
* sysdeps/x86/cpu-features-offsets.sym (XSAVE_STATE_SIZE_OFFSET):
New.
* sysdeps/x86/cpu-features.c: Include <libc-internal.h>.
(get_common_indeces): Set xsave_state_size and
bit_arch_XSAVEC_Usable if needed.
(init_cpu_features): Remove bit_arch_Use_dl_runtime_resolve_slow
and bit_arch_Use_dl_runtime_resolve_opt.
* sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt):
Removed.
(bit_arch_Use_dl_runtime_resolve_slow): Likewise.
(bit_arch_Prefer_No_AVX512): Updated.
(bit_arch_MathVec_Prefer_No_AVX512): Likewise.
(bit_arch_XSAVEC_Usable): New.
(STATE_SAVE_OFFSET): Likewise.
(STATE_SAVE_MASK): Likewise.
[__ASSEMBLER__]: Include <cpu-features-offsets.h>.
(cpu_features): Add xsave_state_size.
(index_arch_Use_dl_runtime_resolve_opt): Removed.
(index_arch_Use_dl_runtime_resolve_slow): Likewise.
(index_arch_XSAVEC_Usable): New.
* sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup):
Replace _dl_runtime_resolve_sse, _dl_runtime_resolve_avx,
_dl_runtime_resolve_avx_slow, _dl_runtime_resolve_avx_opt,
_dl_runtime_resolve_avx512 and _dl_runtime_resolve_avx512_opt
with _dl_runtime_resolve_fxsave, _dl_runtime_resolve_xsave and
_dl_runtime_resolve_xsavec.
* sysdeps/x86_64/dl-trampoline.S (DL_RUNTIME_UNALIGNED_VEC_SIZE):
Removed.
(DL_RUNTIME_RESOLVE_REALIGN_STACK): Check STATE_SAVE_ALIGNMENT
instead of VEC_SIZE.
(REGISTER_SAVE_BND0): Removed.
(REGISTER_SAVE_BND1): Likewise.
(REGISTER_SAVE_BND3): Likewise.
(REGISTER_SAVE_RAX): Always defined to 0.
(VMOV): Removed.
(_dl_runtime_resolve_avx): Likewise.
(_dl_runtime_resolve_avx_slow): Likewise.
(_dl_runtime_resolve_avx_opt): Likewise.
(_dl_runtime_resolve_avx512): Likewise.
(_dl_runtime_resolve_avx512_opt): Likewise.
(_dl_runtime_resolve_sse): Likewise.
(_dl_runtime_resolve_sse_vex): Likewise.
(USE_FXSAVE): New.
(_dl_runtime_resolve_fxsave): Likewise.
(USE_XSAVE): Likewise.
(_dl_runtime_resolve_xsave): Likewise.
(USE_XSAVEC): Likewise.
(_dl_runtime_resolve_xsavec): Likewise.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx512):
Removed.
(_dl_runtime_resolve_avx512_opt): Likewise.
(_dl_runtime_resolve_avx): Likewise.
(_dl_runtime_resolve_avx_opt): Likewise.
(_dl_runtime_resolve_sse): Likewise.
(_dl_runtime_resolve_sse_vex): Likewise.
(_dl_runtime_resolve_fxsave): New.
(_dl_runtime_resolve_xsave): Likewise.
(_dl_runtime_resolve_xsavec): Likewise.
(cherry picked from commit b52b0d793dcb226ecb0ecca1e672ca265973233c)
|
|
On x86-64, _dl_runtime_resolve must preserve the first 8 vector
registers. Add 3 _dl_runtime_resolve tests to verify that SSE,
AVX and AVX512 registers are preserved.
* sysdeps/x86_64/Makefile (tests): Add tst-sse, tst-avx and
tst-avx512.
(test-extras): Add tst-avx-aux and tst-avx512-aux.
(extra-test-objs): Add tst-avx-aux.o and tst-avx512-aux.o.
(modules-names): Add tst-ssemod, tst-avxmod and tst-avx512mod.
($(objpfx)tst-sse): New rule.
($(objpfx)tst-avx): Likewise.
($(objpfx)tst-avx512): Likewise.
(CFLAGS-tst-avx-aux.c): New.
(CFLAGS-tst-avxmod.c): Likewise.
(CFLAGS-tst-avx512-aux.c): Likewise.
(CFLAGS-tst-avx512mod.c): Likewise.
* sysdeps/x86_64/tst-avx-aux.c: New file.
* sysdeps/x86_64/tst-avx.c: Likewise.
* sysdeps/x86_64/tst-avx512-aux.c: Likewise.
* sysdeps/x86_64/tst-avx512.c: Likewise.
* sysdeps/x86_64/tst-avx512mod.c: Likewise.
* sysdeps/x86_64/tst-avxmod.c: Likewise.
* sysdeps/x86_64/tst-sse.c: Likewise.
* sysdeps/x86_64/tst-ssemod.c: Likewise.
(cherry picked from commit 3403a17fea8ccef7dc5f99553a13231acf838744)
|
|
When stack is re-aligned in _dl_runtime_resolve, there is no need to
adjust CFA when allocating register save area on stack.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve): Don't
adjust CFA when allocating register save area on re-aligned
stack.
(cherry picked from commit 0ac8ee53e8efbfd6e1c37094b4653f5c2dad65b5)
|
|
* sysdeps/ieee754/dbl-64/e_pow.c (checkint) Make conditions explicitly
boolean.
(cherry picked from commit e223d1fe72e820d96f43831412ab267a1ace04d0)
|
|
On AVX machines with XGETBV (ECX == 1) like Skylake processors,
(gdb) disass _dl_runtime_resolve_avx_opt
Dump of assembler code for function _dl_runtime_resolve_avx_opt:
0x0000000000015890 <+0>: push %rax
0x0000000000015891 <+1>: push %rcx
0x0000000000015892 <+2>: push %rdx
0x0000000000015893 <+3>: mov $0x1,%ecx
0x0000000000015898 <+8>: xgetbv
0x000000000001589b <+11>: mov %eax,%r11d
0x000000000001589e <+14>: pop %rdx
0x000000000001589f <+15>: pop %rcx
0x00000000000158a0 <+16>: pop %rax
0x00000000000158a1 <+17>: and $0x4,%r11d
0x00000000000158a5 <+21>: bnd je 0x16200 <_dl_runtime_resolve_sse_vex>
End of assembler dump.
is slower than:
(gdb) disass _dl_runtime_resolve_avx_slow
Dump of assembler code for function _dl_runtime_resolve_avx_slow:
0x0000000000015850 <+0>: vorpd %ymm0,%ymm1,%ymm8
0x0000000000015854 <+4>: vorpd %ymm2,%ymm3,%ymm9
0x0000000000015858 <+8>: vorpd %ymm4,%ymm5,%ymm10
0x000000000001585c <+12>: vorpd %ymm6,%ymm7,%ymm11
0x0000000000015860 <+16>: vorpd %ymm8,%ymm9,%ymm9
0x0000000000015865 <+21>: vorpd %ymm10,%ymm11,%ymm10
0x000000000001586a <+26>: vpcmpeqd %xmm8,%xmm8,%xmm8
0x000000000001586f <+31>: vorpd %ymm9,%ymm10,%ymm10
0x0000000000015874 <+36>: vptest %ymm10,%ymm8
0x0000000000015879 <+41>: bnd jae 0x158b0 <_dl_runtime_resolve_avx>
0x000000000001587c <+44>: vzeroupper
0x000000000001587f <+47>: bnd jmpq 0x16200 <_dl_runtime_resolve_sse_vex>
End of assembler dump.
(gdb)
since xgetbv takes much more cycles than single cycle operations like
vpord/vvpcmpeq/ptest. _dl_runtime_resolve_opt should be used only with
AVX512 where AVX512 instructions lead to lower CPU frequency on Skylake
server.
[BZ #21871]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set
bit_arch_Use_dl_runtime_resolve_opt only with AVX512F.
(cherry picked from commit d2cf37c0a2a375cf2fde69f1afbcc49e45368fc4)
|
|
The problem is basically that sys/ucontext.h is defining R0..R15
which happens to conflict with some packages like Firefox when
trying to build on SH.
The very same problem existed on arm back then [1] and it was fixed by
renaming R0..R15 to REG_R0..REG_R15. This patch imploy a similar
strategy for SH.
Checked on sh4-linux-gnu with run-built-tests=no and I also got reports
that it fixes Firefox build on Debian sh4.
* sysdeps/unix/sysv/linux/sh/sh3/ucontext_i.sym: Use new REG_R*
constants instead of the old R* ones.
* sysdeps/unix/sysv/linux/sh/sh4/ucontext_i.sym: Likewise.
* sysdeps/unix/sysv/linux/sh/sys/ucontext.h (NGPREG): Rename...
(NGREG): ... to this, to fit in with other architectures.
(gpregset_t): Use new NGREG macro.
[__USE_GNU]: Remove condition; all architectures other than tile
are unconditional.
(R*): Rename to REG_R*.
(cherry picked from commit 3e1b518550634792de13332edaab0ad722322c2b)
|
|
We rely on the symbol being locally defined so using extern symbol
is not correct and the linker may complain about the relocations.
|
|
This change forces realignment of the stack pointer in __tls_get_addr, so
that binaries compiled by GCCs older than GCC 4.9:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
continue to work even if vector instructions are used in glibc which
require the ABI stack realignment.
__tls_get_addr_slow is added to handle the slow paths in the default
implementation of__tls_get_addr in elf/dl-tls.c. The new __tls_get_addr
calls __tls_get_addr_slow after realigning the stack. Internal calls
within ld.so go directly to the default implementation of __tls_get_addr
because they do not need stack realignment.
[BZ #21609]
* sysdeps/x86_64/Makefile (sysdep-dl-routines): Add tls_get_addr.
(gen-as-const-headers): Add rtld-offsets.sym.
* sysdeps/x86_64/dl-tls.c: New file.
* sysdeps/x86_64/rtld-offsets.sym: Likwise.
* sysdeps/x86_64/tls_get_addr.S: Likewise.
* sysdeps/x86_64/dl-tls.h: Add multiple inclusion guards.
* sysdeps/x86_64/tlsdesc.sym (TI_MODULE_OFFSET): New.
(TI_OFFSET_OFFSET): Likwise.
(cherry picked from commit 031e519c95c069abe4e4c7c59e2b4b67efccdee5)
|
|
Since commit d957c4d3fa48d685ff2726c605c988127ef99395 (i386: Compile
rtld-*.os with -mno-sse -mno-mmx -mfpmath=387), vector intrinsics can
no longer be used in ld.so, even if the compiled code never makes it
into the final ld.so link. This commit adds the missing IS_IN (libc)
guard to the SSE 4.2 strcspn implementation, so that it can be used from
ld.so in the future.
(cherry picked from commit 69052a3a95da37169a08f9e59b2cc1808312753c)
|
|
The LD_HWCAP_MASK environment variable may alter the selection of
function variants for some architectures. For AT_SECURE process it
means that if an outdated routine has a bug that would otherwise not
affect newer platforms by default, LD_HWCAP_MASK will allow that bug
to be exploited.
To be on the safe side, ignore and disable LD_HWCAP_MASK for setuid
binaries.
[BZ #21209]
* elf/rtld.c (process_envvars): Ignore LD_HWCAP_MASK for
AT_SECURE processes.
* sysdeps/generic/unsecvars.h: Add LD_HWCAP_MASK.
(cherry picked from commit 1c1243b6fc33c029488add276e56570a07803bfd)
|
|
(cherry picked from commit 64ae9fe45662c8994b0e56ab469b01967408a154)
|
|
(cherry picked from commit 1d2bc2eae969543b89850e35e532f3144122d80a)
|
|
(cherry picked from commit fdc543919a3d8578631a492e1227c2cd8f5ecec7)
|
|
This patch remove the PID cache and usage in current GLIBC code. Current
usage is mainly used a performance optimization to avoid the syscall,
however it adds some issues:
- The exposed clone syscall will try to set pid/tid to make the new
thread somewhat compatible with current GLIBC assumptions. This cause
a set of issue with new workloads and usecases (such as BZ#17214 and
[1]) as well for new internal usage of clone to optimize other algorithms
(such as clone plus CLONE_VM for posix_spawn, BZ#19957).
- The caching complexity also added some bugs in the past [2] [3] and
requires more effort of each port to handle such requirements (for
both clone and vfork implementation).
- Caching performance gain in mainly on getpid and some specific
code paths. The getpid performance leverage is questionable [4],
either by the idea of getpid being a hotspot as for the getpid
implementation itself (if it is indeed a justifiable hotspot a
vDSO symbol could let to a much more simpler solution).
Other usage is mainly for non usual code paths, such as pthread
cancellation signal and handling.
For thread creation (on stack allocation) the code simplification in fact
adds some performance gain due the no need of transverse the stack cache
and invalidate each element pid.
Other thread usages will require a direct getpid syscall, such as
cancellation/setxid signal, thread cancellation, thread fail path (at
create_thread), and thread signal (pthread_kill and pthread_sigqueue).
However these are hardly usual hotspots and I think adding a syscall is
justifiable.
It also simplifies both the clone and vfork arch-specific implementation.
And by review each fork implementation there are some discrepancies that
this patch also solves:
- microblaze clone/vfork does not set/reset the pid/tid field
- hppa uses the default vfork implementation that fallback to fork.
Since vfork is deprecated I do not think we should bother with it.
The patch also removes the TID caching in clone. My understanding for
such semantic is try provide some pthread usage after a user program
issue clone directly (as done by thread creation with CLONE_PARENT_SETTID
and pthread tid member). However, as stated before in multiple discussions
threads, GLIBC provides clone syscalls without further supporting all this
semantics.
I ran a full make check on x86_64, x32, i686, armhf, aarch64, and powerpc64le.
For sparc32, sparc64, and mips I ran the basic fork and vfork tests from
posix/ folder (on a qemu system). So it would require further testing
on alpha, hppa, ia64, m68k, nios2, s390, sh, and tile (I excluded microblaze
because it is already implementing the patch semantic regarding clone/vfork).
[1] https://codereview.chromium.org/800183004/
[2] https://sourceware.org/ml/libc-alpha/2006-07/msg00123.html
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=15368
[4] http://yarchive.net/comp/linux/getpid_caching.html
* sysdeps/nptl/fork.c (__libc_fork): Remove pid cache setting.
* nptl/allocatestack.c (allocate_stack): Likewise.
(__reclaim_stacks): Likewise.
(setxid_signal_thread): Obtain pid through syscall.
* nptl/nptl-init.c (sigcancel_handler): Likewise.
(sighandle_setxid): Likewise.
* nptl/pthread_cancel.c (pthread_cancel): Likewise.
* sysdeps/unix/sysv/linux/pthread_kill.c (__pthread_kill): Likewise.
* sysdeps/unix/sysv/linux/pthread_sigqueue.c (pthread_sigqueue):
Likewise.
* sysdeps/unix/sysv/linux/createthread.c (create_thread): Likewise.
* sysdeps/unix/sysv/linux/getpid.c: Remove file.
* nptl/descr.h (struct pthread): Change comment about pid value.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Remove thread
pid assert.
* sysdeps/unix/sysv/linux/pthread-pids.h (__pthread_initialize_pids):
Do not set pid value.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove thread
pid cache check.
* nptl_db/td_thr_validate.c (td_thr_validate): Likewise.
* sysdeps/aarch64/nptl/tcb-offsets.sym: Remove pid offset.
* sysdeps/alpha/nptl/tcb-offsets.sym: Likewise.
* sysdeps/arm/nptl/tcb-offsets.sym: Likewise.
* sysdeps/hppa/nptl/tcb-offsets.sym: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/ia64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/m68k/nptl/tcb-offsets.sym: Likewise.
* sysdeps/microblaze/nptl/tcb-offsets.sym: Likewise.
* sysdeps/mips/nptl/tcb-offsets.sym: Likewise.
* sysdeps/nios2/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/s390/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sparc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/tile/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/unix/sysv/linux/aarch64/clone.S: Remove pid and tid caching.
* sysdeps/unix/sysv/linux/alpha/clone.S: Likewise.
* sysdeps/unix/sysv/linux/arm/clone.S: Likewise.
* sysdeps/unix/sysv/linux/hppa/clone.S: Likewise.
* sysdeps/unix/sysv/linux/i386/clone.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/clone2.S: Likewise.
* sysdeps/unix/sysv/linux/mips/clone.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sh/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/tile/clone.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/aarch64/vfork.S: Remove pid set and reset.
* sysdeps/unix/sysv/linux/alpha/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/arm/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/i386/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/clone.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/mips/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sh/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tile/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tst-clone2.c (f): Remove direct pthread
struct access.
(clone_test): Remove function.
(do_test): Rewrite to take in consideration pid is not cached anymore.
(cherry picked from commit c579f48edba88380635ab98cb612030e3ed8691e)
|
|
This patch adds two new macros for internal and inline syscall to use
within GLIBC: INTERNAL_SYSCALL_CALL and INLINE_SYSCALL_CALL. They are
similar to the old INTERNAL_SYSCALL and INLINE_SYSCALL with the difference
the new macros accept a variable argument call and do not require to pass
the expected argument size.
The advantage is it is possible to use variable argument macros like
SYSCALL_LL{64} without the need to also handle the argument size. So
for an ABI where SYSCALL_LL might split the argument in high and low
parts, instead of:
INTERNAL_SYSCALL_DECL (err);
#if ...
INTERNAL_SYSCALL (syscall, err, 2, SYSCALL_LL (len));
#else
INTERNAL_SYSCALL (syscall, err, 1, SYSCALL_LL (len));
#endif
It will be just:
INTERNAL_SYSCALL_CALL (syscall, err, SYSCALL_LL (len));
The INLINE_SYSCALL_CALL follows the same semanthic regarding the argument
and is similar to INLINE_SYSCALL regarding setting errno.
Checked with a build for x86_64, i386, aach64, armhf, powerpc64le, powerpc32,
and mips32. No code generation changed.
* sysdeps/unix/sysdep.h (__INTERNAL_SYSCALL0): New macro.
(__INTERNAL_SYSCALL1): Likewise.
(__INTERNAL_SYSCALL2): Likewise.
(__INTERNAL_SYSCALL3): Likewise.
(__INTERNAL_SYSCALL4): Likewise.
(__INTERNAL_SYSCALL5): Likewise.
(__INTERNAL_SYSCALL6): Likewise.
(__INTERNAL_SYSCALL7): Likewise.
(__INTERNAL_SYSCALL_NARGS_X): Likewise.
(__INTERNAL_SYSCALL_NARGS): Likewise.
(__INTERNAL_SYSCALL_DISP): Likewise.
(INTERNAL_SYSCALL_CALL): Likewise.
(__SYSCALL0): Rename to __INLINE_SYSCALL0.
(__SYSCALL1): Rename to __INLINE_SYSCALL1.
(__SYSCALL2): Rename to __INLINE_SYSCALL2.
(__SYSCALL3): Rename to __INLINE_SYSCALL3.
(__SYSCALL4): Rename to __INLINE_SYSCALL4.
(__SYSCALL5): Rename to __INLINE_SYSCALL5.
(__SYSCALL6): Rename to __INLINE_SYSCALL6.
(__SYSCALL7): Rename to __INLINE_SYSCALL7.
(__SYSCALL_NARGS_X): Rename to __INLINE_SYSCALL_NARGS_X.
(__SYSCALL_NARGS): Rename to __INLINE_SYSCALL_NARGS.
(__SYSCALL_DISP): Rename to __INLINE_SYSCALL_DISP.
(__SYSCALL_CALL): Rename to INLINE_SYSCALL_CALL.
(SYSCALL_CANCEL): Replace __SYSCALL_CALL with INLINE_SYSCALL_CALL.
(cherry picked from commit e33a23fbe8c2dba04fe05678c584d3efcb6c9951)
|
|
On Skylake server, AVX512 load/store instructions in memcpy/memset may
lead to lower CPU turbo frequency in certain situations. Use of AVX2
in memcpy/memset has been observed to have improved overall performance
in many workloads due to the higher frequency.
Since AVX512ER is unique to Xeon Phi, this patch sets Prefer_No_AVX512
if AVX512ER isn't available so that AVX2 versions of memcpy/memset are
used on Skylake server.
[BZ #21396]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set
Prefer_No_AVX512 if AVX512ER isn't available.
* sysdeps/x86/cpu-features.h (bit_arch_Prefer_No_AVX512): New.
(index_arch_Prefer_No_AVX512): Likewise.
* sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Don't use
AVX512 version if Prefer_No_AVX512 is set.
* sysdeps/x86_64/multiarch/memcpy_chk.S (__memcpy_chk):
Likewise.
* sysdeps/x86_64/multiarch/memmove.S (__libc_memmove): Likewise.
* sysdeps/x86_64/multiarch/memmove_chk.S (__memmove_chk):
Likewise.
* sysdeps/x86_64/multiarch/mempcpy.S (__mempcpy): Likewise.
* sysdeps/x86_64/multiarch/mempcpy_chk.S (__mempcpy_chk):
Likewise.
* sysdeps/x86_64/multiarch/memset.S (memset): Likewise.
* sysdeps/x86_64/multiarch/memset_chk.S (__memset_chk):
Likewise.
(cherry picked from commit 4cb334c4d6249686653137ec273d081371b3672d)
|
|
AVX512ER won't be implemented in any Xeon processors and will be in
all Xeon Phi processors. Don't check CPU model number when setting
Prefer_No_VZEROUPPER for Xeon Phi. Instead, set Prefer_No_VZEROUPPER
if AVX512ER is available. It works with current and future Xeon Phi
and non-Xeon Phi processors.
* sysdeps/x86/cpu-features.c (init_cpu_features): Set
Prefer_No_VZEROUPPER if AVX512ER is available.
* sysdeps/x86/cpu-features.h
(bit_cpu_AVX512PF): New.
(bit_cpu_AVX512ER): Likewise.
(bit_cpu_AVX512CD): Likewise.
(bit_cpu_AVX512BW): Likewise.
(bit_cpu_AVX512VL): Likewise.
(index_cpu_AVX512PF): Likewise.
(index_cpu_AVX512ER): Likewise.
(index_cpu_AVX512CD): Likewise.
(index_cpu_AVX512BW): Likewise.
(index_cpu_AVX512VL): Likewise.
(reg_AVX512PF): Likewise.
(reg_AVX512ER): Likewise.
(reg_AVX512CD): Likewise.
(reg_AVX512BW): Likewise.
(reg_AVX512VL): Likewise.
(cherry picked from commit 1c53cb49de6d82d9469ccbd5aa0c55924502bd8b)
|
|
As noted in bug 20126, MIPS n64 uses an incorrect implementation of
readahead intended for 32-bit systems. This patch adds a
syscalls.list entry to fix this. An updated version of the
consolidation patch
<https://sourceware.org/ml/libc-alpha/2016-09/msg00527.html> could
remove this syscalls.list entry again.
Tested with compilation (only) for mips64; the nature of the syscall
doesn't allow for a glibc test to detect this issue.
[BZ #21026]
* sysdeps/unix/sysv/linux/mips/mips64/n64/syscalls.list
(readahead): New syscall entry.
(cherry picked from commit 30733525c6867c160261db1afade6326000f9f75)
|
|
On Skylake server, _dl_runtime_resolve_avx512_opt is used to preserve
the first 8 vector registers. The code layout is
if only %xmm0 - %xmm7 registers are used
preserve %xmm0 - %xmm7 registers
if only %ymm0 - %ymm7 registers are used
preserve %ymm0 - %ymm7 registers
preserve %zmm0 - %zmm7 registers
Branch predication always executes the fallthrough code path to preserve
%zmm0 - %zmm7 registers speculatively, even though only %xmm0 - %xmm7
registers are used. This leads to lower CPU frequency on Skylake
server. This patch changes the fallthrough code path to preserve
%xmm0 - %xmm7 registers instead:
if whole %zmm0 - %zmm7 registers are used
preserve %zmm0 - %zmm7 registers
if only %ymm0 - %ymm7 registers are used
preserve %ymm0 - %ymm7 registers
preserve %xmm0 - %xmm7 registers
Tested on Skylake server.
[BZ #21258]
* sysdeps/x86_64/dl-trampoline.S (_dl_runtime_resolve_opt):
Define only if _dl_runtime_resolve is defined to
_dl_runtime_resolve_sse_vex.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_opt):
Fallthrough to _dl_runtime_resolve_sse_vex.
(cherry picked from commit c15f8eb50cea7ad1a4ccece6e0982bf426d52c00)
|
|
When glibc is built with -fstack-check, trying to use posix_spawn can
lead to segfaults due to gcc internally probing stack memory too far.
The new spawn API will allocate a minimum of 1 page, but the stack
checking logic might probe a couple of pages. When it tries to walk
them, everything falls apart.
The gcc internal docs [1] state the default interval checking is one
page. Which means we need two pages (the current one, and the next
probed). No target currently defines it larger.
Further, it mentions that the default minimum stack size needed to
recover from an overflow is 4/8KiB for sjlj or 8/12KiB for others.
But some Linux targets (like mips and ppc) go up to 16KiB (and some
non-Linux targets go up to 24KiB).
Let's create each child with a minimum of 32KiB slack space to support
them all, and give us future breathing room.
No test is added as existing ones crash. Even a simple call is
enough to trigger the problem:
char *argv[] = { "/bin/ls", NULL };
posix_spawn(NULL, "/bin/ls", NULL, NULL, argv, NULL);
[1] https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gccint/Stack-Checking.html
(cherry picked from commit 21f042c804835d1f7a4a8e06f2c93ca35a182042)
|
|
The ia64-specific clone2 call expects the base of the stack mapping and
the stack size as sep arguments, not an initial stack value as on other
stack-grows-down architectures. Reuse the stack-grows-up macro so we
pass in the right stack base.
Reported-by: Matt Turner <mattst88@gentoo.org>
(cherry picked from commit ddc3fb333469c2997798742dc0509dc1e3201d91)
|
|
The binutils package was recently changed to fix -z relro support on hppa.
See ld/21000 for details:
https://sourceware.org/bugzilla/show_bug.cgi?id=21000
This exposed a problem with the _dl_start_user function in the RTLD_START
define. We need to set __libc_stack_end before it is made read only. For
this, we need to define DL_STACK_END. The offset of 0x160 gives the same
stack end as the code in _dl_start_user.
A build log with the attached patch is here:
https://buildd.debian.org/status/fetch.php?pkg=glibc&arch=hppa&ver=2.24-9&stamp=1487639205&raw=0
(cherry picked from commit 5d20a49aaccef5ef7adac93d5ca159f6b7ba0105)
|
|
Since memset-vec-unaligned-erms.S has VDUP_TO_VEC0_AND_SET_RETURN at
function entry, memset optimized for AVX2 and AVX512 will always use
ymm/zmm register. VZEROUPPER should be placed before ret in
L(stosb):
movq %rdx, %rcx
movzbl %sil, %eax
movq %rdi, %rdx
rep stosb
movq %rdx, %rax
ret
since it can be reached from
L(stosb_more_2x_vec):
cmpq $REP_STOSB_THRESHOLD, %rdx
ja L(stosb)
[BZ #21081]
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(L(stosb)): Add VZEROUPPER before ret.
(cherry picked from commit 02b78ff749f0c88771713368dbb2a09b1979814f)
|
|
There is no need to use PLT nor GOT in static archives to branch to a
function, regardless whether static archives is compiled with PIC or
not. When static archives are used to create dynamic executable,
PLT/GOT may be used. The resulting executable still works correctly.
[BZ #20750]
* sysdeps/x86_64/sysdep.h (JUMPTARGET): Check SHARED instead
of PIC.
(cherry picked from commit c9070e6305c08365c5f8b604bdca39c699d70cfa)
|
|
Drop the GLIBC_TUNABLES environment variable from the environment of
setxid processes to avoid passing it on to non-setxid children. This
prevents potentially insecure tunables in the GLIBC_TUNABLES envvar
from crossing over into a child that may use a libc that has tunables
support.
* sysdeps/generic/unsecvars.h: Add GLIBC_TUNABLES.
|
|
The update of *adapt_count after the release of the lock causes a race
condition when thread A unlocks, thread B continues and destroys the
mutex, and thread A writes to *adapt_count.
(cherry picked from commit e9a96ea1aca4ebaa7c86e8b83b766f118d689d0f)
(with changes from commit eb1321f291515dae75c83a40c39e775fdd38e97a)
|
|
The alpha specific version of trunc and truncf always add and subtract
0x1.0p23 or 0x1.0p52 even for big values. This causes this kind of
errors in the testsuite:
Failure: Test: trunc_towardzero (0x1p107)
Result:
is: 1.6225927682921334e+32 0x1.fffffffffffffp+106
should be: 1.6225927682921336e+32 0x1.0000000000000p+107
difference: 1.8014398509481984e+16 0x1.0000000000000p+54
ulp : 0.5000
max.ulp : 0.0000
Change this by returning the input value when its absolute value is
greater than 0x1.0p23 or 0x1.0p52. NaN have to go through the add and
subtract operations to get possibly silenced.
Finally remove the code to handle inexact exception, trunc should never
generate such an exception.
Changelog:
* sysdeps/alpha/fpu/s_trunc.c (__trunc): Return the input value
when its absolute value is greater than 0x1.0p52.
[_IEEE_FP_INEXACT] Remove.
* sysdeps/alpha/fpu/s_truncf.c (__truncf): Return the input value
when its absolute value is greater than 0x1.0p23.
[_IEEE_FP_INEXACT] Remove.
(cherry picked from commit b74d259fe793499134eb743222cd8dd7c74a31ce)
|
|
The alpha version of rint wrongly return sNaN for sNaN input. Fix that
by checking for NaN and by returning the input value added with itself
in that case.
Changelog:
* sysdeps/alpha/fpu/s_rint.c (__rint): Add argument with itself
when it is a NaN.
* sysdeps/alpha/fpu/s_rintf.c (__rintf): Likewise.
(cherry picked from commit cb7f9d63b921ea1a1cbb4ab377a8484fd5da9a2b)
|
|
The alpha version of floor wrongly return sNaN for sNaN input. Fix that
by checking for NaN and by returning the input value added with itself
in that case.
Finally remove the code to handle inexact exception, floor should never
generate such an exception.
Changelog:
* sysdeps/alpha/fpu/s_floor.c (__floor): Add argument with itself
when it is a NaN.
[_IEEE_FP_INEXACT] Remove.
* sysdeps/alpha/fpu/s_floorf.c (__floorf): Likewise.
(cherry picked from commit 65cc568cf57156e5230db9a061645e54ff028a41)
|
|
The alpha version of ceil wrongly return sNaN for sNaN input. Fix that
by checking for NaN and by returning the input value added with itself
in that case.
Finally remove the code to handle inexact exception, ceil should never
generate such an exception.
Changelog:
* sysdeps/alpha/fpu/s_ceil.c (__ceil): Add argument with itself
when it is a NaN.
[_IEEE_FP_INEXACT] Remove.
* sysdeps/alpha/fpu/s_ceilf.c (__ceilf): Likewise.
(cherry picked from commit 062e53c195b4a87754632c7d51254867247698b4)
|