Age | Commit message (Collapse) | Author |
|
The update of *adapt_count after the release of the lock causes a race
condition when thread A unlocks, thread B continues and destroys the
mutex, and thread A writes to *adapt_count.
(cherry picked from commit e9a96ea1aca4ebaa7c86e8b83b766f118d689d0f)
(with changes from commit eb1321f291515dae75c83a40c39e775fdd38e97a)
|
|
The alpha specific version of trunc and truncf always add and subtract
0x1.0p23 or 0x1.0p52 even for big values. This causes this kind of
errors in the testsuite:
Failure: Test: trunc_towardzero (0x1p107)
Result:
is: 1.6225927682921334e+32 0x1.fffffffffffffp+106
should be: 1.6225927682921336e+32 0x1.0000000000000p+107
difference: 1.8014398509481984e+16 0x1.0000000000000p+54
ulp : 0.5000
max.ulp : 0.0000
Change this by returning the input value when its absolute value is
greater than 0x1.0p23 or 0x1.0p52. NaN have to go through the add and
subtract operations to get possibly silenced.
Finally remove the code to handle inexact exception, trunc should never
generate such an exception.
Changelog:
* sysdeps/alpha/fpu/s_trunc.c (__trunc): Return the input value
when its absolute value is greater than 0x1.0p52.
[_IEEE_FP_INEXACT] Remove.
* sysdeps/alpha/fpu/s_truncf.c (__truncf): Return the input value
when its absolute value is greater than 0x1.0p23.
[_IEEE_FP_INEXACT] Remove.
(cherry picked from commit b74d259fe793499134eb743222cd8dd7c74a31ce)
|
|
The alpha version of rint wrongly return sNaN for sNaN input. Fix that
by checking for NaN and by returning the input value added with itself
in that case.
Changelog:
* sysdeps/alpha/fpu/s_rint.c (__rint): Add argument with itself
when it is a NaN.
* sysdeps/alpha/fpu/s_rintf.c (__rintf): Likewise.
(cherry picked from commit cb7f9d63b921ea1a1cbb4ab377a8484fd5da9a2b)
|
|
The alpha version of floor wrongly return sNaN for sNaN input. Fix that
by checking for NaN and by returning the input value added with itself
in that case.
Finally remove the code to handle inexact exception, floor should never
generate such an exception.
Changelog:
* sysdeps/alpha/fpu/s_floor.c (__floor): Add argument with itself
when it is a NaN.
[_IEEE_FP_INEXACT] Remove.
* sysdeps/alpha/fpu/s_floorf.c (__floorf): Likewise.
(cherry picked from commit 65cc568cf57156e5230db9a061645e54ff028a41)
|
|
The alpha version of ceil wrongly return sNaN for sNaN input. Fix that
by checking for NaN and by returning the input value added with itself
in that case.
Finally remove the code to handle inexact exception, ceil should never
generate such an exception.
Changelog:
* sysdeps/alpha/fpu/s_ceil.c (__ceil): Add argument with itself
when it is a NaN.
[_IEEE_FP_INEXACT] Remove.
* sysdeps/alpha/fpu/s_ceilf.c (__ceilf): Likewise.
(cherry picked from commit 062e53c195b4a87754632c7d51254867247698b4)
|
|
There is transition penalty when SSE instructions are mixed with 256-bit
AVX or 512-bit AVX512 load instructions. Since _dl_runtime_resolve_avx
and _dl_runtime_profile_avx512 save/restore 256-bit YMM/512-bit ZMM
registers, there is transition penalty when SSE instructions are used
with lazy binding on AVX and AVX512 processors.
To avoid SSE transition penalty, if only the lower 128 bits of the first
8 vector registers are non-zero, we can preserve %xmm0 - %xmm7 registers
with the zero upper bits.
For AVX and AVX512 processors which support XGETBV with ECX == 1, we can
use XGETBV with ECX == 1 to check if the upper 128 bits of YMM registers
or the upper 256 bits of ZMM registers are zero. We can restore only the
non-zero portion of vector registers with AVX/AVX512 load instructions
which will zero-extend upper bits of vector registers.
This patch adds _dl_runtime_resolve_sse_vex which saves and restores
XMM registers with 128-bit AVX store/load instructions. It is used to
preserve YMM/ZMM registers when only the lower 128 bits are non-zero.
_dl_runtime_resolve_avx_opt and _dl_runtime_resolve_avx512_opt are added
and used on AVX/AVX512 processors supporting XGETBV with ECX == 1 so
that we store and load only the non-zero portion of vector registers.
This avoids SSE transition penalty caused by _dl_runtime_resolve_avx and
_dl_runtime_profile_avx512 when only the lower 128 bits of vector
registers are used.
_dl_runtime_resolve_avx_slow is added and used for AVX processors which
don't support XGETBV with ECX == 1. Since there is no SSE transition
penalty on AVX512 processors which don't support XGETBV with ECX == 1,
_dl_runtime_resolve_avx512_slow isn't provided.
[BZ #20495]
[BZ #20508]
* sysdeps/x86/cpu-features.c (init_cpu_features): For Intel
processors, set Use_dl_runtime_resolve_slow and set
Use_dl_runtime_resolve_opt if XGETBV suports ECX == 1.
* sysdeps/x86/cpu-features.h (bit_arch_Use_dl_runtime_resolve_opt):
New.
(bit_arch_Use_dl_runtime_resolve_slow): Likewise.
(index_arch_Use_dl_runtime_resolve_opt): Likewise.
(index_arch_Use_dl_runtime_resolve_slow): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_runtime_setup): Use
_dl_runtime_resolve_avx512_opt and _dl_runtime_resolve_avx_opt
if Use_dl_runtime_resolve_opt is set. Use
_dl_runtime_resolve_slow if Use_dl_runtime_resolve_slow is set.
* sysdeps/x86_64/dl-trampoline.S: Include <cpu-features.h>.
(_dl_runtime_resolve_opt): New. Defined for AVX and AVX512.
(_dl_runtime_resolve): Add one for _dl_runtime_resolve_sse_vex.
* sysdeps/x86_64/dl-trampoline.h (_dl_runtime_resolve_avx_slow):
New.
(_dl_runtime_resolve_opt): Likewise.
(_dl_runtime_profile): Define only if _dl_runtime_profile is
defined.
(cherry picked from commit fb0f7a6755c1bfaec38f490fbfcaa39a66ee3604)
|
|
When glibc is compiled with gcc 6.2 that has been configured with
to default to PIC/PIE, the static version of __memcpy_chk is not built,
as the test is done on PIC instead of SHARED. Fix the test to check for
SHARED, like it is done for similar functions like memmove_chk.
Changelog:
* sysdeps/x86_64/memcpy_chk.S (__memcpy_chk): Check for SHARED
instead of PIC.
(cherry picked from commit 380ec16d62f459d5a28cfc25b7b20990c45e1cc9)
|
|
Avoid a build error with microMIPS compilation and recent versions of
GAS which complain if a branch targets a label which is marked as data
rather than microMIPS code:
../sysdeps/mips/mips32/crti.S: Assembler messages:
../sysdeps/mips/mips32/crti.S:72: Error: branch to a symbol in another ISA mode
make[2]: *** [.../csu/crti.o] Error 1
as commit 9d862524f6ae ("MIPS: Verify the ISA mode and alignment of
branch and jump targets") closed a hole in branch processing, making
relocation calculation respect the ISA mode of the symbol referred.
This allowed diagnosing the situation where an attempt is made to pass
control from code assembled for one ISA mode to code assembled for a
different ISA mode and either relaxing the branch to a cross-mode jump
or if that is not possible, then reporting this as an error rather than
letting such code build and then fail unpredictably at the run time.
This however requires the correct annotation of branch targets as code,
because the ISA mode is not relevant for data symbols and is therefore
not recorded for them. The `.insn' pseudo-op is used for this purpose
and has been supported by GAS since:
Wed Feb 12 14:36:29 1997 Ian Lance Taylor <ian@cygnus.com>
* config/tc-mips.c (mips_pseudo_table): Add "insn".
(s_insn): New static function.
* doc/c-mips.texi: Document .insn.
so there has been no reason to avoid it where required. More recently
this pseudo-op has been documented, by the microMIPS architecture
specification[1][2], as required for the correct interpretation of any
code label which is not followed by an actual instruction in an assembly
source.
Use it in our crti.S files then, to mark that the trailing label there
with no instructions following is indeed not a code bug and the branch
is legitimate.
References:
[1] "MIPS Architecture for Programmers, Volume II-B: The microMIPS32
Instruction Set", MIPS Technologies, Inc., Document Number: MD00582,
Revision 5.04, January 15, 2014, Section 7.1 "Assembly-Level
Compatibility", p. 533
[2] "MIPS Architecture for Programmers, Volume II-B: The microMIPS64
Instruction Set", MIPS Technologies, Inc., Document Number: MD00594,
Revision 5.04, January 15, 2014, Section 8.1 "Assembly-Level
Compatibility", p. 623
2016-11-23 Matthew Fortune <Matthew.Fortune@imgtec.com>
Maciej W. Rozycki <macro@imgtec.com>
* sysdeps/mips/mips32/crti.S (_init): Add `.insn' pseudo-op at
`.Lno_weak_fn' label.
* sysdeps/mips/mips64/n32/crti.S (_init): Likewise.
* sysdeps/mips/mips64/n64/crti.S (_init): Likewise.
(cherry picked from commit cfaf1949ff1f8336b54c43796d0e2531bc8a40a2)
|
|
Building glibc for powerpc64 with recent (2.27.51.20161012) binutils,
with multi-arch enabled, I get the error:
../sysdeps/powerpc/powerpc64/power6/memset.S: Assembler messages:
../sysdeps/powerpc/powerpc64/power6/memset.S:254: Error: operand out of range (5 is not between 0 and 1)
../sysdeps/powerpc/powerpc64/power6/memset.S:254: Error: operand out of range (128 is not between 0 and 31)
../sysdeps/powerpc/powerpc64/power6/memset.S:254: Error: missing operand
Indeed, cmpli is documented as a four-operand instruction, and looking
at nearby code it seems likely cmpldi was intended. This patch fixes
this powerpc64 code accordingly, and makes a corresponding change to
the powerpc32 code.
Tested for powerpc, powerpc64 and powerpc64le by Tulio Magno Quites
Machado Filho
* sysdeps/powerpc/powerpc32/power6/memset.S (memset): Use cmplwi
instead of cmpli.
* sysdeps/powerpc/powerpc64/power6/memset.S (memset): Use cmpldi
instead of cmpli.
(cherry picked from commit 78b7adbaea643f2f213bb113e3ec933416a769a8)
|
|
Although conceptually correct for p{read,write}{64} offset argument passing,
sh4 implementation does not generate the correct expected code. The
__ALIGNMENT_ARG redefinition is incorrect for two reasons: 1. the
kernel-features.h header is included multiple times (since it contains no
guards) and 2. the value it redefines is also incorrect (should be '0, '
instead of empty definition).
This patch fixes it by adding another macro, SYSCALL_LL_PRW{64}, meant to be
used to pass the offset argument on p{read,write}64. It is basically the
already define SYSCALL_LL{64} plus __ALIGNMENT_ARG unless __ASSUME_PRW_DUMMY_ARG
is define. In this case an empty dummy argument is used regardless how
__ALIGNMENT_ARG is defined (sh4 case).
Checked on x86_64, i686, aarch64, armhf, and powerpc64le (basically a sanity
check). Also, John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> and
James Clarke <jrtc27@jrtc27.com> help me check on a debian sh4 bootstrap using
2.24 plus this patch to verify it also corrected fixed the regression issue.
I also verified the generated object for a 2.24 build and master with this
patch for sh4 and both look identical.
* sysdeps/unix/sysv/linux/pread.c (__libc_pread): Use SYSCALL_LL_PRW.
* sysdeps/unix/sysv/linux/pwrite.c (__libc_pwrite): Likewise.
* sysdeps/unix/sysv/linux/pread64.c (__libc_pread64): Use
SYSCALL_LL64_PRW.
* sysdeps/unix/sysv/linux/pwrite64.c (__libc_pwrite64): Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h: Define
__ASSUME_PRW_DUMMY_ARG.
* sysdeps/unix/sysv/linux/sh/pread.c: Remove file.
* sysdeps/unix/sysv/linux/sh/pread64.c: Likewise.
* sysdeps/unix/sysv/linux/sh/pwrite.c: Likewise.
* sysdeps/unix/sysv/linux/sh/pwrite64.c: Likewise.
* sysdeps/unix/sysv/linux/sysdep.h: Define SYSCALL_LL_PRW and
SYSCALL_LL_PRW64 based on __ASSUME_PRW_DUMMY_ARG.
|
|
* sysdeps/powerpc/fpu/libm-test-ulps: Regenerated.
|
|
This patch correctly block and unblocks all signals when executing
Linux posix_spawn by using the __libc_signal_{un}block_all functions
instead of default sigprocmask. The latter might remove both
SIGCANCEL and SIGSETXID from the blocked signal list.
Checked on x86_64, i686, powerpc64le, and aarch64.
* sysdeps/unix/sysv/linux/spawni.c (__spawnix): Correctly block and unblock
all signals when executing the clone vfork child.
(SIGALL_SET): Remove macro.
|
|
This patch correctly enable and disable asynchronous cancellation on
Linux posix_spawn. Current code invert the logic by enabling and
disabling instead. It also adds a new test to check if posix_spawn
is not a cancellation entrypoint.
Checked on x86_64, i686, powerpc64le, and aarch64.
* nptl/Makefile (tests): Add tst-exec5.
* nptl/tst-exec5.c: New file.
* sysdeps/unix/sysv/linux/spawni.c (__spawni): Correctly enable and disable
asynchronous cancellation.
|
|
Fix multiarch build for POWER9 by correcting the order of the
directories listed at sysnames configure variable.
(cherry picked from commit 1850ce5a2ea3b908b26165e7e951cd4334129f07)
|
|
* sysdeps/arm/nacl/libc.abilist: Add GLIBC_2.24 A.
|
|
* sysdeps/nacl/dup.c: Add libc_hidden_def.
(cherry picked from commit 6b75ba1388bff6a81bad410d7318d385a043b3cb)
|
|
* sysdeps/posix/wait3.c: Don't treat STAT_LOC as a union, since it's
not any more.
(cherry picked from commit 9a3d16ac152447567bfc822497c564a0630c79fe)
|
|
* sysdeps/nacl/clock.c (clock): nacl_abi_clock_t -> nacl_irt_clock_t
(cherry picked from commit 307c2c2dfff76330a29a3ab69a0177b118142145)
|
|
__startcontext marks the bottom of the call stack of the contexts created
by makecontext.
(cherry picked from commit 9e2ff6c9cc54c0b4402b8d49e4abe7000fde7617)
Also includes the NEWS update, cherry-picked from commits
056dd72af83f5459ce6d545a49dea6dba7d635dc and
4d047efdbc55b0d68947cde682e5363d16a66294.
|
|
With this change, we no longer add sysdep.o and similar objects which
are present in libc.a to other static libraries.
(cherry picked from commit d9067fca40b8aac156d73cfa44d6875813555a6c)
|
|
The fdim and fdimf functions on sparc do not fully follow the standard
and do not set errno to ERANGE when the result overflows. Since glibc
2.24 this causes the two following tests to fail:
Failure: fdim (max_value, -max_value): errno set to 0, expected 34 (ERANGE)
Failure: fdim_upward (max_value, -max_value): errno set to 0, expected 34 (ERANGE)
It happens that using GCC with the generic C code generates very similar
code to the sparc specific implementations. Therefore this patches
remove them. Note it might still worth adding a vis3 specific version of
fdim on sparc32/sparcv9, this is done in a following patch to ease
backporting.
Changelog:
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/Makefile
[$(subdir) = math && $(have-as-vis3) = yes] (libm-sysdep_routines):
Remove s_fdimf-vis3, s_fdim-vis3.
* sysdeps/sparc/sparc32/fpu/s_fdim.S: Delete file.
* sysdeps/sparc/sparc32/fpu/s_fdimf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_fdim-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_fdim.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_fdimf-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_fdimf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_fdim.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_fdimf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_fdim.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_fdimf.S: Likewise.
(cherry picked from commit 8a9f4eb95894eae7e725e79721ba26fbc5b4ed06)
|
|
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_nearbyint-vis3.S
(__nearbyint_vis3): Don't check for sNaN before float register is
loaded with the incoming argument.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_nearbyintf-vis3.S
(__nearbyintf_vis3): Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_nearbyint.S (__nearbyint):
Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_nearbyintf.S (__nearbyintf):
Likewise.
(cherry picked from commit 3ef3f1b93fdf20143865cc16dd75f39a7f0fac2f)
|
|
As pointer out on the mailing list, the inline assembly code in
sysdeps/powerpc/ifunc-sel.h doesn't have a list of clobbered registers
and used wrong constraints.
This patch fixes that. I verified it doesn't introduce any change in the
generated code.
Changelog:
* sysdeps/powerpc/ifunc-sel.h (ifunc_sel): Add "11", "12", "cr0" to the
clobber list. Use "i" constraint instead of "X".
(ifunc_one): Add "12" to the clobber list. Use "i" constraint instead
of "X".
(cherry picked from commit 30f926d3b3dcb74c038155715ed341d5c4b334eb)
|
|
On 32-bit PowerPC GCC 6 always saves the PIC register on the stack in
the prologue and adjust the stack in the epilogue. It is therefore not
possible anymore to just exit the function in the inline asm code,
otherwise it corrupts the stack pointer. This causes the following tests
to fail when using GCC 6:
FAIL: elf/ifuncmain1
FAIL: elf/ifuncmain1pic
FAIL: elf/ifuncmain1picstatic
FAIL: elf/ifuncmain1pie
FAIL: elf/ifuncmain1staticpic
FAIL: elf/ifuncmain1staticpie
FAIL: elf/ifuncmain1vis
FAIL: elf/ifuncmain1vispic
FAIL: elf/ifuncmain1vispie
FAIL: elf/ifuncmain2pic
FAIL: elf/ifuncmain2picstatic
FAIL: elf/ifuncmain3
FAIL: elf/ifuncmain4picstatic
FAIL: elf/ifuncmain5
FAIL: elf/ifuncmain5picstatic
FAIL: elf/ifuncmain5staticpic
The solution is to replace the beqlr instructions by a beq to the end
of the inline asm code. This fixes all the above failures.
ChangeLog:
* sysdeps/powerpc/ifunc-sel.h (ifunc_sel): Replace beqlr instructions
by beq instructions jumping to the end of the function.
(cherry picked from commit ee71e5b6dd6a21e981ad0fa74359e066f5a8b359)
|
|
Static libraries can use the sysdep.o copy in libc.a without
a performance penalty. This results in a visible difference
if libpthread.a is relinked into a single object file (which
is needed to support libraries which check for the presence
of certain symbols to enable threading support, which generally
fails with static linking unless libpthread.a is relinked).
(cherry picked from commit e67330ab57bfd0f964539576ae7dcc658c456724)
|
|
The ceil, floor and trunc functions on sparc do not fully follow the
standard and trigger an inexact exception when presented a value which
is not an integer. Since glibc 2.24 this causes a few tests to fail,
for instance:
testing double (without inline functions)
Failure: ceil (lit_pi): Exception "Inexact" set
Failure: ceil (-lit_pi): Exception "Inexact" set
Failure: ceil (min_subnorm_value): Exception "Inexact" set
Failure: ceil (min_value): Exception "Inexact" set
Failure: ceil (0.1): Exception "Inexact" set
Failure: ceil (0.25): Exception "Inexact" set
Failure: ceil (0.625): Exception "Inexact" set
Failure: ceil (-min_subnorm_value): Exception "Inexact" set
Failure: ceil (-min_value): Exception "Inexact" set
Failure: ceil (-0.1): Exception "Inexact" set
Failure: ceil (-0.25): Exception "Inexact" set
Failure: ceil (-0.625): Exception "Inexact" set
I tried to fix that by using the same strategy than used on other
architectures, that is by saving the FSR register at the beginning
and restoring it at the end of the function. When doing so I noticed
a comment that this operation might be very costly, so I decided to
do some benchmarks.
The benchmarks below represent the time required to run each of the
function 60 millions of times with different input value. I have done
that in the basic V9 code, the VIS2 code, and using the default C
implementation of the libc, for both sparc32 and sparc64, on a Niagara
T1 based machine and an UltraSparc IIIi. Given I don't have access to a
more recent machine), I haven't been able to test the VIS3 version. Also
it should be noted that it doesn't make sense to do this benchmark for
V8 or earlier as in that case we use the default C implementation. The
results are available in the table below, the "+ fix" version correspond
to the one saving and restoring the FSR.
Niagara T1 / sparc32
--------------------
ceilf ceil floorf floor truncf trunc
V9 19.10 22.48 19.10 22.48 16.59 19.27
V9 + fix 19.77 23.34 19.77 23.33 17.27 20.12
VIS2 16.87 19.62 16.87 19.62
VIS2 + fix 17.55 20.47 17.55 20.47
C impl 11.39 13.80 11.40 13.80 10.88 10.84
Niagara T1 / sparc64
--------------------
ceilf ceil floorf floor truncf trunc
V9 18.14 22.23 18.14 22.23 15.64 19.02
V9 + fix 18.82 23.08 18.82 23.08 16.32 19.87
VIS2 15.92 19.37 15.92 19.37
VIS2 + fix 16.59 20.22 16.59 20.22
C impl 11.39 13.60 11.39 15.36 10.88 12.65
UltraSparc IIIi / sparc32
-------------------------
ceilf ceil floorf floor truncf trunc
V9 4.81 7.09 6.61 11.64 4.91 7.05
V9 + fix 7.20 10.42 7.14 10.54 6.76 9.47
VIS2 4.81 7.03 4.76 7.13
VIS2 + fix 6.76 9.51 6.71 9.63
C impl 3.88 8.62 3.90 9.45 3.57 6.62
UltraSparc IIIi / sparc64
-------------------------
ceilf ceil floorf floor truncf trunc
V9 3.48 4.39 3.48 4.41 3.01 3.85
V9 + fix 4.76 5.90 4.76 5.90 4.86 6.26
VIS2 2.95 3.61 2.95 3.61
VIS2 + fix 4.24 5.37 4.30 7.97
C impl 3.63 4.89 3.62 6.38 3.33 4.03
The first thing that should be noted is that the C implementation is
always faster on the Niagara T1 based machine. On the UltraSparc IIIi
the float version on sparc32 is also faster.
Coming back about the fix saving and restoring the FSR, it appears
it has a big impact as expected. In that case the C implementation is
always faster than the fixed implementations.
This patch therefore removes the sparc specific implementations in
favor of the generic ones.
Changelog:
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/Makefile
[$(subdir) = math] (libm-sysdep_routines): Remove.
[$(subdir) = math && $(have-as-vis3) = yes] (libm-sysdep_routines):
Remove s_ceilf-vis3, s_ceil-vis3, s_floorf-vis3, s_floor-vis3,
s_truncf-vis3, s_trunc-vis3.
* sysdeps/sparc/sparc64/fpu/multiarch/Makefile: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_ceil-vis2.S: Delete
file.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_ceil-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_ceil.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_ceilf-vis2.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_ceilf-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_ceilf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_floor-vis2.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_floor-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_floor.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_floorf-vis2.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_floorf-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_floorf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_trunc-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_trunc.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_truncf-vis3.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/multiarch/s_truncf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_ceil.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_ceilf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_floor.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_floorf.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_trunc.S: Likewise.
* sysdeps/sparc/sparc32/sparcv9/fpu/s_truncf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil-vis2.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil-vis3.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceil.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf-vis2.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf-vis3.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_ceilf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor-vis2.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor-vis3.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf-vis2.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf-vis3.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_trunc-vis3.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_trunc.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_truncf-vis3.S: Likewise.
* sysdeps/sparc/sparc64/fpu/multiarch/s_truncf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_ceil.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_ceilf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_floor.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_floorf.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_trunc.S: Likewise.
* sysdeps/sparc/sparc64/fpu/s_truncf.S: Likewise.
|
|
Don't compile do_test with -mavx, -mavx nor -mavx512 since they won't run
on non-AVX machines.
[BZ #20384]
* sysdeps/x86_64/fpu/Makefile (extra-test-objs): Add
test-double-libmvec-sincos-avx-main.o,
test-double-libmvec-sincos-avx2-main.o,
test-double-libmvec-sincos-main.o,
test-float-libmvec-sincosf-avx-main.o,
test-float-libmvec-sincosf-avx2-main.o and
test-float-libmvec-sincosf-main.o.
test-float-libmvec-sincosf-avx512-main.o.
($(objpfx)test-double-libmvec-sincos): Also link with
$(objpfx)test-double-libmvec-sincos-main.o.
($(objpfx)test-double-libmvec-sincos-avx): Also link with
$(objpfx)test-double-libmvec-sincos-avx-main.o.
($(objpfx)test-double-libmvec-sincos-avx2): Also link with
$(objpfx)test-double-libmvec-sincos-avx2-main.o.
($(objpfx)test-float-libmvec-sincosf): Also link with
$(objpfx)test-float-libmvec-sincosf-main.o.
($(objpfx)test-float-libmvec-sincosf-avx): Also link with
$(objpfx)test-float-libmvec-sincosf-avx2-main.o.
[$(config-cflags-avx512) == yes] (extra-test-objs): Add
test-double-libmvec-sincos-avx512-main.o and
($(objpfx)test-double-libmvec-sincos-avx512): Also link with
$(objpfx)test-double-libmvec-sincos-avx512-main.o.
($(objpfx)test-float-libmvec-sincosf-avx512): Also link with
$(objpfx)test-float-libmvec-sincosf-avx512-main.o.
(CFLAGS-test-double-libmvec-sincos.c): Removed.
(CFLAGS-test-float-libmvec-sincosf.c): Likewise.
(CFLAGS-test-double-libmvec-sincos-main.c): New.
(CFLAGS-test-double-libmvec-sincos-avx-main.c): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx2-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-avx-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-avx2-main.c): Likewise.
(CFLAGS-test-float-libmvec-sincosf-avx512-main.c): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx.c): Set to -DREQUIRE_AVX.
(CFLAGS-test-float-libmvec-sincosf-avx.c ): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx2.c): Set to
-DREQUIRE_AVX2.
(CFLAGS-test-float-libmvec-sincosf-avx2.c ): Likewise.
(CFLAGS-test-double-libmvec-sincos-avx512.c): Set to
-DREQUIRE_AVX512F.
(CFLAGS-test-float-libmvec-sincosf-avx512.c): Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos.c: Rewritten.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf.c: Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx-main.c: New
file.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx2-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-avx512-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-double-libmvec-sincos-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx2-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-avx512-main.c:
Likewise.
* sysdeps/x86_64/fpu/test-float-libmvec-sincosf-main.c:
Likewise.
|
|
|
|
Fix missing verb and typo in comment about AT_HWCAP entry, in the context
of mcontext_t struct definition for PPC64 Linux kernels.
|
|
This partly reverts commit f8238ae3c7701dbd9c04028861916de64e578114
that regenerated the ulps, to make the max ulps good for gcc-5,
gcc-6 and gcc-trunk as well.
* sysdeps/aarch64/libm-test-ulps: Updated.
|
|
If the default memcpy variant is called with a length of >1MB on 31bit,
r13 is clobbered as the algorithm is switching to mvcle. The mvcle code
returns without restoring r13. All other cases are restoring r13.
If memcpy is called from outside libc the ifunc resolver will only select
this variant if running on machines older than z10.
Otherwise or if memcpy is called from inside libc, this default memcpy
variant is called.
The testcase timezone/tst-tzset is triggering this issue in some combinations
of gcc versions and optimization levels.
This bug was introduced in commit 04bb21ac93e90d7696bcaf8febe2b2dd2d83585a
and thus is a regression compared to former glibc 2.23 release.
This patch removes the usage of r13 at all. Thus it is not saved and restored.
The base address for execute-instruction is now stored in r5 which is obtained
after r5 is not needed anymore as 256byte block counter.
ChangeLog:
* sysdeps/s390/s390-32/memcpy.S (memcpy): Eliminate the usage
of r13 as it is not restored in mvcle case.
|
|
If a function passes in a variable named "ret", the code will miscompile
when it declares a local ret variable. In some cases, it's even a build
failure like so:
../sysdeps/unix/sysv/linux/spawni.c: In function '__spawni_child':
../sysdeps/unix/sysv/linux/spawni.c:289:5: error: address of register variable 'ret' requested
while (write_not_cancel (p, &ret, sizeof ret) < 0)
|
|
Compile i386 rtld-*.os with -mno-sse -mno-mmx -mfpmath=387 so that no
code in ld.so uses mm/xmm/ymm/zmm registers on i386 since the first 3
mm/xmm/ymm/zmm registers are used to pass vector parameters which must
be preserved.
* sysdeps/i386/Makefile (rtld-CFLAGS): New.
[subdir == elf] (CFLAGS-.os): Replace -mno-sse -mno-mmx
-mfpmath=387 with $(rtld-CFLAGS).
[subdir != elf] (CFLAGS-.os): Compile rtld-*.os with
$(rtld-CFLAGS).
|
|
During the sincos consolidation I made two mistakes, one was a logical
error due to which cos(0x1.8475e5afd4481p+0) returned
sin(0x1.8475e5afd4481p+0) instead.
The second issue was an error in negating inputs for the correct
quadrants for sine. I could not find a suitable test case for this
despite running a program to search for such an input for a couple of
hours.
Following patch fixes both issues. Tested on x86_64. Thanks to Matt
Clay for identifying the issue.
[BZ #20357]
* sysdeps/ieee754/dbl-64/s_sin.c (sloww): Fix up condition
to call __mpsin/__mpcos and to negate values.
* math/auto-libm-test-in: Add test.
* math/auto-libm-test-out: Regenerate.
|
|
* sysdeps/aarch64/libm-test-ulps: Regenerated.
|
|
This patch changes both the nptl and libc Linux raise implementation
to avoid the issues described in BZ#15368. The strategy used is
summarized in bug report first comment:
1. Block all signals (including internal NPTL ones);
2. Get pid and tid directly from syscall (not relying on cached
values);
3. Call tgkill;
4. Restore old signal mask.
Tested on x86_64 and i686.
[BZ #15368]
* sysdeps/unix/sysv/linux/nptl-signals.h
(__nptl_clear_internal_signals): New function.
(__libc_signal_block_all): Likewise.
(__libc_signal_block_app): Likewise.
(__libc_signal_restore_set): Likewise.
* sysdeps/unix/sysv/linux/pt-raise.c (raise): Use Linux raise.c
implementation.
* sysdeps/unix/sysv/linux/raise.c (raise): Reimplement to not use
the cached pid/tid value in pthread structure.
|
|
This fixes with GCC 6.1 and -O3 on i686:
Failure: Test: j0_downward (0xap+0)
Result:
is: -2.45935813e-01 -0x1.f7ad32p-3
should be: -2.45935768e-01 -0x1.f7ad2cp-3
difference: 4.47034835e-08 0x1.800000p-25
ulp : 3.0000
max.ulp : 2.0000
Maximal error of `j0_downward'
is : 3 ulp
accepted: 2 ulp
[BZ #20347]
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Regenerated.
|
|
64-bit off_t in pread64, preadv, pwrite64 and pwritev syscalls is passed
in one 64-bit register for both x32 and x86-64. Since the inline
asm statement only passes long, which is 32-bit for x32, in registers,
64-bit off_t is truncated to 32-bit on x32. Since __ASSUME_PREADV and
__ASSUME_PWRITEV are defined unconditionally, these syscalls can be
implemented in syscalls.list to pass 64-bit off_t in one 64-bit register.
Tested on x86-64 and x32 with off_t > 4GB on pread64/pwrite64 and
preadv64/pwritev64.
[BZ #20348]
* sysdeps/unix/sysv/linux/x86_64/syscalls.list: Add pread64,
preadv64, pwrite64 and pwritev64.
|
|
Since _dl_tlsdesc_dynamic is called via PLT, we need to add 8 bytes for
push in the PLT entry to align the stack.
[BZ #20309]
* configure.ac (have-mtls-dialect-gnu2): Set to yes if
-mtls-dialect=gnu2 works.
* configure: Regenerated.
* elf/Makefile [have-mtls-dialect-gnu2 = yes]
(tests): Add tst-gnu2-tls1.
(modules-names): Add tst-gnu2-tls1mod.
($(objpfx)tst-gnu2-tls1): New.
(tst-gnu2-tls1mod.so-no-z-defs): Likewise.
(CFLAGS-tst-gnu2-tls1mod.c): Likewise.
* elf/tst-gnu2-tls1.c: New file.
* elf/tst-gnu2-tls1mod.c: Likewise.
* sysdeps/x86_64/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Add 8
bytes for push in the PLT entry to align the stack.
|
|
Define LO_HI_LONG to skip pos_h since it is ignored by kernel:
static inline loff_t pos_from_hilo(unsigned long high, unsigned long low)
{
#define HALF_LONG_BITS (BITS_PER_LONG / 2)
return (((loff_t)high << HALF_LONG_BITS) << HALF_LONG_BITS) | low;
}
where size of loff_t == size of long.
[BZ #20349]
* sysdeps/unix/sysv/linux/x86_64/sysdep.h (LO_HI_LONG): New.
|
|
AArch64 uses HWCAP bits but they are not defined in sys/auxv.h.
This patch adds a copy of the linux v4.6 arm64 uapi asm/hwcap.h
definitions.
* sysdeps/unix/sysv/linux/aarch64/bits/hwcap.h: New.
|
|
When glibc is built with --enable-profile, the ENTRY of
asm functions includes CALL_MCOUNT for profiling.
(matters for binaries static linked against libc_p.a.)
CALL_MCOUNT did not save/restore argument registers
around the _mcount call so it clobbered them.
(it is enough to only save/restore the arguments passed
to a given asm function, but that would be too many asm
changes so it is simpler to always save all argument
registers in this macro.)
float args are not saved: mcount does not clobber the
float regs and currently no asm function takes float
arguments anyway.
[BZ #18707]
* sysdeps/aarch64/Makefile (CFLAGS-mcount.c): Add -mgeneral-regs-only.
* sysdeps/aarch64/sysdep.h (CALL_MCOUNT): Save argument registers.
|
|
The p{read,write}v{64} consolidation patch [1] added a wrong guard
for LO_HI_LONG definition. It currently uses both
'__WORDSIZE == 64' and 'defined __ASSUME_WORDSIZE64_ILP32' to set
the value to be passed in one argument, otherwise it will be split
in two.
However it fails on MIPS64n32 where syscalls n32 uses the compat
implementation in the kernel meaning the off_t arguments are passed
in two separate registers.
GLIBC already defines a macro for such cases (__OFF_T_MATCHES_OFF64_T),
so this patch uses it instead.
Checked on x86_64, i686, x32, aarch64, armhf, and s390.
* sysdeps/unix/sysv/linux/sysdep.h
[__WORDSIZE == 64 || __ASSUME_WORDSIZE64_ILP32] (LO_HI_LONG): Remove
guards.
* misc/tst-preadvwritev-common.c: New file.
* misc/tst-preadvwritev.c: Use tst-preadvwritev-common.c.
* misc/tst-preadvwritev64.c: Use tst-preadwritev-common.c and add
a check for files larger than 2GB.
[1] 4751bbe2ad4d1bfa05774e29376d553ecfe563b0
|
|
This patch removes the __ASSUME_OFF_DIFF_OFF64 define introduced in
p{read,write} consolidation patch. This define was added based on
the idea 32 bits ports would continue to follow previous off{64}_t
definition where off_t size differs from off64_t one.
However, with recent AArch64/ILP32 patch submission and also with
discussion for RISCV kernel interface, 32 bits ports now may aim
to use off_t and off64_t with the same size as 64 bits.
So current assumption for both p{read,write} and p{read,write}v
are not compatible with new type definition. This patch now makes
the syscall wrappers to only depend on __OFF_T_MATCHES_OFF64_T to
define the default and 64-suffix variant, as follow:
<function>.c
#ifndef __OFF_T_MATCHES_OFF64_T
/* build <function> */
#endif
and
<function>64.c
/* build <function>64 */
#ifdef __OFF_T_MATCHES_OFF64_T
weak_alias (fallocate64, fallocate)
#endif
Tested on x86_64, i686, x32, and armhf.
* sysdeps/unix/sysv/linux/mips/kernel-features.h
(__ASSUME_OFF_DIFF_OFF64): Remove define.
* sysdeps/unix/sysv/linux/pread.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (pread): Replace by
__OFF_T_MATCHES_OFF64_T.
* sysdeps/unix/sysv/linux/pread64.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (pread64): Likewise.
* sysdeps/unix/sysv/linux/preadv.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (preadv): Likewise.
* sysdeps/unix/sysv/linux/preadv64.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (preadv64): Likewise.
* sysdeps/unix/sysv/linux/pwrite.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (pwrite): Likewise.
* sysdeps/unix/sysv/linux/pwrite64.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (pwrite64): Likewise.
* sysdeps/unix/sysv/linux/pwritev.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (pwritev): Likewise.
* sysdeps/unix/sysv/linux/pwritev64.c
[__WORDSIZE != 64 || __ASSUME_OFF_DIFF_OFF64] (pwritev64): Likewise.
|
|
The previous uses of this symbol were all in wordsize-32 code.
In commit eeddfa91cbb1 ("Consolidate off_t/off64_t syscall
argument passing") it was expanded to be used in pread/pwrite.
Accordingly, we only define it in 32-bit compilation modes now.
Both tilepro and tilegx32 follow this convention for the
kernel ABI. tilegx64 follows it for passing 128-bit values,
but there are no such ABIs in the kernel.
|
|
Commit a6a4395d fixed modf implementation by compiling s_modf.c and
s_modff.c with -fsignaling-nans. However these files are also included
from the pre-POWER5+ implementation, and thus these files should also
be compiled with -fsignaling-nans.
Changelog:
[BZ #20240]
* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/Makefile
(CFLAGS-s_modf-ppc32.c): New variable.
(CFLAGS-s_modff-ppc32.c): Likewise.
* sysdeps/powerpc/powerpc64/fpu/multiarch/Makefile
(CFLAGS-s_modf-ppc64.c): Likewise.
(CFLAGS-s_modff-ppc64.c): Likewise.
|
|
On s390, the current prelink undo code in elf_machine_lazy_rel()
has the requirement, that the plt stubs use the first got slots
after the 3 reserved ones.
In case of undoing prelink, the plt got slots are reset to the correct
addresses whithin the corresponding plt-stub. Therefore the address
is calculated by the address of the first plt-stub-address which
was written by prelink (see l->l_mach.plt) to got[1] and index of
current relocation multiplied with 32 (=size of one plt slot).
The index was calculated with ¤t-got-slot - &got[3].
This patch removes the requirement, that the plt-got-slots are
starting at got[3]. The index is now calculated with
¤t-reloc - &reloc[0]. The first struct Elf64_Rela is stored
at DT_JMPREL.
This patch is needed to prepare for partial relro support.
Ulrich Weigand suggested this approach to use DT_JMPREL - Thanks.
ChangeLog:
* sysdeps/s390/linkmap.h (struct link_map_machine):
Remove member gotplt and add member jmprel.
* sysdeps/s390/s390-32/dl-machine.h
(elf_machine_runtime_setup): Setup member jmprel with DT_JMPREL
instead of gotplt with &got[3].
(elf_machine_lazy_rel): Calculate address with reloc and jmprel.
* sysdeps/s390/s390-64/dl-machine.h: Likewise.
|
|
Changelog:
* sysdeps/hppa/fpu/libm-test-ulps: Regenerate.
|
|
If the input values are unaligned and if there are null characters in the
memory before the starting address of the input values, strcasecmp
gives incorrect return code. Fixed it by adding mask the bits that
are not part of the string.
|
|
|