aboutsummaryrefslogtreecommitdiff
path: root/math/libm-test.inc
AgeCommit message (Collapse)Author
2014-03-25Relax gen-auto-libm-tests may-underflow rules, test log1p in all rounding modes.Joseph Myers
gen-auto-libm-tests presently allows but does not require underflow exceptions for results with magnitude in the range (greatest subnormal, least normal]. In some cases, the magnitude of the exact result is very slightly above the least normal, but rounding in the implementation results in it effectively computing an infinite-precision result that is slightly below the least normal, so raising an underflow exception. This is in accordance with the documented accuracy goals, but results in testsuite failures. This patch changes the logic to allow underflows when the mathematical result is up to 0.5ulp above the least normal (so in any case where the round-to-nearest result is the least normal). Ideally underflows in all these cases would be accepted only when an underflow with the actual result is consistent with the rounding mode (in FE_TOWARDZERO mode, a return value of the least normal implies that the infinite-precision result did not underflow so there should be no underflow exception, for example), so as to match the documented goals more precisely - whereas at present the tests for exceptions are completely independent of the tests of the returned values. (The same applies to overflow exceptions as well - they too should be checked for consistency with the result, as in FE_TOWARDZERO mode a result 1ulp below the largest finite value should be inconsistent with an overflow exception and cause a failure with overflow rather than simply being considered a 1ulp error when overflow is expected.) But the present patch at least deals with the cases causing spurious failures so that (a) certain existing tests no longer need to be marked as having spurious exceptions (such markings in auto-libm-test-in end up applying to more cases than just those they are needed for) and (b) log1p can be tested in all rounding modes without introducing more such failures. This patch duly moves tests of log1p to ALL_RM_TEST. Tested x86_64 and x86 and ulps updated accordingly. [BZ #16357] [BZ #16599] * math/gen-auto-libm-tests.c (fp_format_desc): Add field min_plus_half. (fp_formats): Update initializers. (init_fp_formats): Initialize new field. (output_for_one_input_case): Allow underflow for results up to min_plus_half. * math/libm-test.inc (log1p_test): Use ALL_RM_TEST. * math/auto-libm-test-in: Don't mark some underflows from asin and atanh as spurious. * math/auto-libm-test-out: Regenerated. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-03-24Fix dbl-64 exp overflow/underflow in non-default rounding modes (bug 16284).Joseph Myers
The dbl-64 version of exp needs round-to-nearest mode for its internal computations, but that has the consequence of inappropriate overflowing and underflowing results in other rounding modes. This patch fixes this by recomputing the relevant results in cases where the round-to-nearest result overflows to infinity or underflows to zero (most of the diffs are actually just consequent reindentation). Tests are enabled in all rounding modes for complex functions using exp - but not for cexp because it turns out there are bugs causing spurious underflows for cexp for some tests, which will need to be fixed separately (I suspect ccos ccosh csin csinh ctan ctanh have similar bugs, just not shown by the present set of test inputs). Tested x86_64 and x86 and ulps updated accordingly. [BZ #16284] * sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Use original rounding mode to recompute results that overflow to infinity or underflow to zero. * math/auto-libm-test-in: Don't mark tests as expected to fail for bug 16284. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (ccos_test): Use ALL_RM_TEST. (ccosh_test): Likewise. (csin_test_data): Use plus_oflow. (csin_test): Use ALL_RM_TEST. (csinh_test_data): Use plus_oflow. (csinh_test): Use ALL_RM_TEST. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-03-21Fix log (1) in round-downward mode (bug 16731).Joseph Myers
According to ISO C Annex F, log (1) should be +0 in all rounding modes, but some implementations in glibc wrongly return -0 in round-downward mode (mapping to log1p (x - 1) is problematic because 1 - 1 is -0 in round-downward mode, and log1p (-0) is -0). This patch fixes this. (It helps with some implementations of other functions such as acosh, log2 and log10 that call out to log, but not enough to enable all-rounding-modes testing for those functions without further fixes to other implementations of them.) Tested x86_64 and x86 and ulps updated accordingly, and did spot tests for mips64 for the ldbl-128 fix, and i586 for the sysdeps/i386/fpu implementations shadowed by those in sysdeps/i386/i686/fpu. [BZ #16731] * sysdeps/i386/fpu/e_log.S (__ieee754_log): Take absolute value when x - 1 is zero. * sysdeps/i386/fpu/e_logf.S (__ieee754_logf): Likewise. * sysdeps/i386/fpu/e_logl.S (__ieee754_logl): Likewise. * sysdeps/i386/i686/fpu/e_logl.S (__ieee754_logl): Likewise. * sysdeps/ieee754/dbl-64/e_log.c (__ieee754_log): Return +0 when argument is 1. * sysdeps/ieee754/ldbl-128/e_logl.c (__ieee754_logl): Likewise. * sysdeps/x86_64/fpu/e_logl.S: Take absolute value when x - 1 is zero. * math/libm-test.inc (log_test): Use ALL_RM_TEST. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-03-21Test most libm functions in all rounding modes.Joseph Myers
This patch makes libm-test.inc tests of most functions use ALL_RM_TEST unless there was some reason to defer that change for a particular function. I started out planning to defer the change for pow (bug 16315), cexp / ccos / ccosh / csin / csinh (likely fallout from exp, bug 16284) and cpow (exact expectations for signs of exact zero results not wanted). Testing on x86_64 and x86 showed additional failures for acosh, cacos, catan, catanh, clog, clog10, jn, log, log10, log1p, log2, tgamma, yn, so making the change for those functions was deferred as well, pending investigation to show which of these represent distinct bugs (some such bugs may already be filed) and appropriate fixing / XFAILing. Failures include wrong signs of zero results, errors slightly above the 9ulp bound (in such cases it may make sense for functions to set round-to-nearest internally to reduce error accumulation), large errors and incorrect overflow/underflow for the rounding mode (with consequent missing errno settings in some cases). It's possible some could be issues with test expectations, though I didn't notice any that were obviously like that (I added NO_TEST_INLINE for cases that were failing for ildoubl on x86 and where it seemed reasonable for them to fail for the fast-math inlines). There may of course be failures on other architectures for functions that didn't fail on x86_64 or x86, in which case the usual rule applies: file a bug (preferably identifying the underlying problem function, in cases where function A calls function B and a problem with function B may present in the test results for function A) if not already in Bugzilla then fix or XFAIL. Tested x86_64 and x86 and ulps updated accordingly. * math/libm-test.inc (asinh_test): Use ALL_RM_TEST. (atan_test): Likewise. (atanh_test_data): Use NO_TEST_INLINE for two tests. (atanh_test): Use ALL_RM_TEST. (atan2_test_data): Likewise. (cabs_test): Likewise. (cacosh_test): Likewise. (carg_test): Likewise. (casin_test): Likewise. (casinh_test): Likewise. (cbrt_test): Likewise. (csqrt_test): Likewise. (erf_test): Likewise. (erfc_test): Likewise. (pow10_test): Likewise. (exp2_test): Likewise. (hypot_test): Likewise. (j0_test): Likewise. (j1_test): Likewise. (lgamma_test): Likewise. (gamma_test): Likewise. (sincos_test): Likewise. (tanh_test): Likewise. (y0_test): Likewise. (y1_test): Likewise. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-03-20Make libm-test support ALL_RM_TEST with AUTO_TESTS_*.Joseph Myers
This patch continues improvements to all-rounding-mode libm testing by making testing with ALL_RM_TEST support test results from auto-libm-test-out. gen-libm-test.pl is adapted to generate appropriate output with results for each rounding mode, with AUTO_TESTS_* calls no longer specifying a rounding mode. Where there were separate functions in libm-test.inc to test a function in each rounding mode, using AUTO_TESTS_* to list the tests for each rounding mode, those are converted to using ALL_RM_TEST (so generally this patch doesn't change the sets of tests run in each rounding mode, except that in various cases special-case tests given directly in libm-test.inc were previously run only for round-to-nearest, and now are run for all rounding modes). Tested x86_64 and x86. * math/gen-libm-test.pl (generate_testfile): Expect only function name as argument to AUTO_TESTS_* and pass results for all rounding modes to parse_args. (parse_auto_input): Separate inputs of automatic tests from outputs before storing in %auto_tests. * math/libm-test.inc (acos_test_data): Update call to AUTO_TESTS_f_f. (acos_test): Use ALL_RM_TEST. (acos_tonearest_test_data): Remove. (acos_test_tonearest): Likewise. (acos_towardzero_test_data): Likewise. (acos_test_towardzero): Likewise. (acos_downward_test_data): Likewise. (acos_test_downward): Likewise. (acos_upward_test_data): Likewise. (acos_test_upward): Likewise. (acosh_test_data): Update call to AUTO_TESTS_f_f. (asin_test_data): Likewise. (asin_test): Use ALL_RM_TEST. (asin_tonearest_test_data): Remove. (asin_test_tonearest): Likewise. (asin_towardzero_test_data): Likewise. (asin_test_towardzero): Likewise. (asin_downward_test_data): Likewise. (asin_test_downward): Likewise. (asin_upward_test_data): Likewise. (asin_test_upward): Likewise. (asinh_test_data): Update call to AUTO_TESTS_f_f. (atan_test_data): Likewise. (atanh_test_data): Likewise. (atan2_test_data): Update call to AUTO_TESTS_ff_f. (cabs_test_data): Update call to AUTO_TESTS_c_f. (carg_test_data): Likewise. (cbrt_test_data): Update call to AUTO_TESTS_f_f. (ccos_test_data): Update call to AUTO_TESTS_c_c. (ccosh_test_data): Likewise. (cexp_test_data): Likewise. (clog_test_data): Likewise. (clog10_test_data): Likewise. (cos_test_data): Update call to AUTO_TESTS_f_f. (cos_test): Use ALL_RM_TEST. (cos_tonearest_test_data): Remove. (cos_test_tonearest): Likewise. (cos_towardzero_test_data): Likewise. (cos_test_towardzero): Likewise. (cos_downward_test_data): Likewise. (cos_test_downward): Likewise. (cos_upward_test_data): Likewise. (cos_test_upward): Likewise. (cosh_test_data): Update call to AUTO_TESTS_f_f. (cosh_test): Use ALL_RM_TEST. (cosh_tonearest_test_data): Remove. (cosh_test_tonearest): Likewise. (cosh_towardzero_test_data): Likewise. (cosh_test_towardzero): Likewise. (cosh_downward_test_data): Likewise. (cosh_test_downward): Likewise. (cosh_upward_test_data): Likewise. (cosh_test_upward): Likewise. (cpow_test_data): Update call to AUTO_TESTS_cc_c. (csqrt_test_data): Update call to AUTO_TESTS_c_c. (ctan_test_data): Likewise. (ctan_test): Use ALL_RM_TEST. (ctan_tonearest_test_data): Remove. (ctan_test_tonearest): Likewise. (ctan_towardzero_test_data): Likewise. (ctan_test_towardzero): Likewise. (ctan_downward_test_data): Likewise. (ctan_test_downward): Likewise. (ctan_upward_test_data): Likewise. (ctan_test_upward): Likewise. (ctanh_test_data): Update call to AUTO_TESTS_c_c. (ctanh_test): Use ALL_RM_TEST. (ctanh_tonearest_test_data): Remove. (ctanh_test_tonearest): Likewise. (ctanh_towardzero_test_data): Likewise. (ctanh_test_towardzero): Likewise. (ctanh_downward_test_data): Likewise. (ctanh_test_downward): Likewise. (ctanh_upward_test_data): Likewise. (ctanh_test_upward): Likewise. (erf_test_data): Update call to AUTO_TESTS_f_f. (erfc_test_data): Likewise. (exp_test_data): Likewise. (exp_test): Use ALL_RM_TEST. (exp_tonearest_test_data): Remove. (exp_test_tonearest): Likewise. (exp_towardzero_test_data): Likewise. (exp_test_towardzero): Likewise. (exp_downward_test_data): Likewise. (exp_test_downward): Likewise. (exp_upward_test_data): Likewise. (exp_test_upward): Likewise. (exp10_test_data): Update call to AUTO_TESTS_f_f. (exp10_test): Use ALL_RM_TEST. (exp10_tonearest_test_data): Remove. (exp10_test_tonearest): Likewise. (exp10_towardzero_test_data): Likewise. (exp10_test_towardzero): Likewise. (exp10_downward_test_data): Likewise. (exp10_test_downward): Likewise. (exp10_upward_test_data): Likewise. (exp10_test_upward): Likewise. (exp2_test_data): Update call to AUTO_TESTS_f_f. (expm1_test_data): Likewise. (expm1_test): Use ALL_RM_TEST. (expm1_tonearest_test_data): Remove. (expm1_test_tonearest): Likewise. (expm1_towardzero_test_data): Likewise. (expm1_test_towardzero): Likewise. (expm1_downward_test_data): Likewise. (expm1_test_downward): Likewise. (expm1_upward_test_data): Likewise. (expm1_test_upward): Likewise. (fma_test_data): Update call to AUTO_TESTS_fff_f. (fma_test): Use ALL_RM_TEST. (fma_towardzero_test_data): Remove. (fma_test_towardzero): Likewise. (fma_downward_test_data): Likewise. (fma_test_downward): Likewise. (fma_upward_test_data): Likewise. (fma_test_upward): Likewise. (hypot_test_data): Update call to AUTO_TESTS_ff_f. (j0_test_data): Update call to AUTO_TESTS_f_f. (j1_test_data): Likewise. (jn_test_data): Update call to AUTO_TESTS_if_f. (lgamma_test_data): Update call to AUTO_TESTS_f_f1. (log_test_data): Update call to AUTO_TESTS_f_f. (log10_test_data): Likewise. (log1p_test_data): Likewise. (log2_test_data): Likewise. (pow_test_data): Update call to AUTO_TESTS_ff_f. (pow_tonearest_test_data): Likewise. (sin_test_data): Update call to AUTO_TESTS_f_f. (sin_test): Use ALL_RM_TEST. (sin_tonearest_test_data): Remove. (sin_test_tonearest): Likewise. (sin_towardzero_test_data): Likewise. (sin_test_towardzero): Likewise. (sin_downward_test_data): Likewise. (sin_test_downward): Likewise. (sin_upward_test_data): Likewise. (sin_test_upward): Likewise. (sincos_test_data): Update call to AUTO_TESTS_fFF_11. (sinh_test_data): Update call to AUTO_TESTS_f_f. (sinh_test): Use ALL_RM_TEST. (sinh_tonearest_test_data): Remove. (sinh_test_tonearest): Likewise. (sinh_towardzero_test_data): Likewise. (sinh_test_towardzero): Likewise. (sinh_downward_test_data): Likewise. (sinh_test_downward): Likewise. (sinh_upward_test_data): Likewise. (sinh_test_upward): Likewise. (sqrt_test_data): Update call to AUTO_TESTS_f_f. (sqrt_test): Use ALL_RM_TEST. (sqrt_tonearest_test_data): Remove. (sqrt_test_tonearest): Likewise. (sqrt_towardzero_test_data): Likewise. (sqrt_test_towardzero): Likewise. (sqrt_downward_test_data): Likewise. (sqrt_test_downward): Likewise. (sqrt_upward_test_data): Likewise. (sqrt_test_upward): Likewise. (tan_test_data): Update call to AUTO_TESTS_f_f. (tan_test): Use ALL_RM_TEST. (tan_tonearest_test_data): Remove. (tan_test_tonearest): Likewise. (tan_towardzero_test_data): Likewise. (tan_test_towardzero): Likewise. (tan_downward_test_data): Likewise. (tan_test_downward): Likewise. (tan_upward_test_data): Likewise. (tan_test_upward): Likewise. (tanh_test_data): Update call to AUTO_TESTS_f_f. (tgamma_test_data): Likewise. (y0_test_data): Likewise. (y1_test_data): Likewise. (yn_test_data): Update call to AUTO_TESTS_if_f. (main): Do not call removed functions.
2014-03-19Use ALL_RM_TEST for more libm tests.Joseph Myers
Continuing the move to using ALL_RM_TEST for tests in libm-test.inc, this patch converts the tests of fdim, ldexp and scalb. fdim and scalb are cases where tests could depend on the rounding mode though none of the present test inputs do; ldexp is such a case where the function is equivalent to scalbn (for binary floating point) and the tests used were a subset of those for scalbn, so this patch makes ldexp testing use the scalbn tests, as done for other cases of libm function aliases. Tested x86_64 and x86. * math/libm-test.inc (fdim_test): Use ALL_RM_TEST. (ldexp_test_data): Remove. (ldexp_test): Move to after scalbn_test. Use ALL_RM_TEST with scalbn_test_data. (scalb_test): Use ALL_RM_TEST.
2014-03-18Test scalbn and scalbln in all rounding modes, add more tests of negative ↵Joseph Myers
arguments. Continuing the move to systematically testing libm functions in all rounding modes with ALL_RM_TEST, this patch converts the tests of scalbn and scalbln to use that macro. Those tests include cases of underflow and overflow, meaning the expected results depend on the rounding mode. For convenience in writing such tests manually, the patch adds the notation plus_oflow, minus_oflow, plus_uflow and minus_uflow for overflowing / underflowing results of each sign appropriate to the rounding mode being used, and gen-libm-test.pl is made to substitute in the appropriate values. The tests of underflow and overflow are extended to include negative arguments to provide better coverage (otherwise minus_oflow and minus_uflow wouldn't have been used at all). (A subsequent patch will make ldexp use the scalbn tests, as those functions are equivalent for binary floating point.) Tested x86_64 and x86. * math/gen-libm-test.pl (parse_args): Handle plus_oflow, minus_oflow, plus_uflow and minus_uflow in expected results. * math/libm-test.inc (scalbn_test_data): Add more tests of negative arguments. Use plus_oflow, minus_oflow, plus_uflow and minus_uflow. (scalbn_test): Use ALL_RM_TEST. (scalbln_test_data): Add more tests of negative arguments. Use plus_oflow, minus_oflow, plus_uflow and minus_uflow. (scalbln_test): Use ALL_RM_TEST.
2014-03-17Test rint and nearbyint with same inputs, in all rounding modes.Joseph Myers
This patch arranges for rint and nearbyint to be tested by libm-test.inc with the same inputs (previously each had some test inputs the other didn't, although there was a lot of overlap as well), and for nearbyint to be tested in all rounding modes where previously it was only tested in round-to-nearest mode. The expected results are the same for each function, except that rint is expected to have "inexact" exceptions for non-integer input and nearbyint is expected not to have those exceptions. Tested x86_64 and x86. * math/libm-test.inc (nearbyint_test_data): Include all tests used for rint. Include results for all rounding modes. (nearbyint_test): Use ALL_RM_TEST. (rint_test_data): Include all tests used for nearbyint.
2014-03-17Add libm-test support for per-rounding-mode manually specified results.Joseph Myers
This patch continues the libm-test move towards automatic testing of all test inputs in all rounding modes by adding gen-libm-test.pl support for tests specifying results in each rounding mode manually. Previously a TEST_* line could specify arguments and results, or arguments, results and flags. Now there is the option of (arguments, results-rd, flags-rd, results-rn, flags-rn, results-rz, flags-rz, results-ru, flags-ru). This is used to replace the separate arrays of results in each rounding mode for lrint, llrint and rint. (In the case of rint, some tests were only in rint_test_data and needed to have expectations for non-default rounding modes added, which I did manually. In various cases there were slight differences in things such as the ordering of tests in the arrays for each mode.) Tested x86_64 and x86. * math/gen-libm-test.pl (parse_args): Handle results specified for each rounding mode separately. * math/libm-test.inc (lrint_test_data): Merge in per-rounding-mode tests and results from lrint_tonearest_test_data, lrint_towardzero_test_data, lrint_downward_test_data and lrint_upward_test_data. (lrint_test): Use ALL_RM_TEST. (lrint_tonearest_test_data): Remove. (lrint_test_tonearest): Likewise. (lrint_towardzero_test_data): Likewise. (lrint_test_towardzero): Likewise. (lrint_downward_test_data): Likewise. (lrint_test_downward): Likewise. (lrint_upward_test_data): Likewise. (lrint_test_upward): Likewise. (llrint_test_data): Merge in per-rounding-mode tests and results from llrint_tonearest_test_data, llrint_towardzero_test_data, llrint_downward_test_data and llrint_upward_test_data. (llrint_test): Use ALL_RM_TEST. (llrint_tonearest_test_data): Remove. (llrint_test_tonearest): Likewise. (llrint_towardzero_test_data): Likewise. (llrint_test_towardzero): Likewise. (llrint_downward_test_data): Likewise. (llrint_test_downward): Likewise. (llrint_upward_test_data): Likewise. (llrint_test_upward): Likewise. (rint_test_data): Merge in per-rounding-mode tests and results from rint_tonearest_test_data, rint_towardzero_test_data, rint_downward_test_data and rint_upward_test_data. Add per-rounding-mode results for tests not in those arrays. (rint_test): Use ALL_RM_TEST. (rint_tonearest_test_data): Remove. (rint_test_tonearest): Likewise. (rint_towardzero_test_data): Likewise. (rint_test_towardzero): Likewise. (rint_downward_test_data): Likewise. (rint_test_downward): Likewise. (rint_upward_test_data): Likewise. (rint_test_upward): Likewise. (main): Don't call removed functions.
2014-03-14PowerPC: remove wrong roundl implementation for PowerPC64Adhemerval Zanella
The roundl assembly implementation (sysdeps/powerpc/powerpc64/fpu/s_roundl.S) returns wrong results for some inputs where first double is a exact integer and the precision is determined by second long double. Checking on implementation comments and history, I am very confident the assembly implementation was based on a version before commit 5c68d401698a58cf7da150d9cce769fa6679ba5f that fixes BZ#2423 (Errors in long double (ldbl-128ibm) rounding functions in glibc-2.4). By just removing the implementation and make the build select sysdeps/ieee754/ldbl-128ibm/s_roundl.c instead fixes the failing math. This fixes 16707.
2014-03-14PowerPC: remove wrong nearbyintl implementation for PPC64Adhemerval Zanella
The nearbyintl assembly implementation (sysdeps/powerpc/powerpc64/fpu/s_nearbyintl.S) returns wrong results for some inputs where first double is a exact integer and the precision is determined by second long double. Checking on implementation comments and history, I am very confident the assembly implementation was based on a version before commit 5c68d401698a58cf7da150d9cce769fa6679ba5f that fixes BZ#2423 (Errors in long double (ldbl-128ibm) rounding functions in glibc-2.4). By just removing the implementation and make the build select sysdeps/ieee754/ldbl-128ibm/s_nearbyintl.c instead fixes the failing math. Fixes BZ#16706.
2014-03-14PowerPC: remove wrong ceill implementation for PowerPC64Adhemerval Zanella
The ceill assembly implementation (sysdeps/powerpc/powerpc64/fpu/s_ceill.S) returns wrong results for some inputs where first double is a exact integer and the precision is determined by second long double. Checking on implementation comments and history, I am very confident the assembly implementation was based on a version before commit 5c68d401698a58cf7da150d9cce769fa6679ba5f that fixes BZ#2423 (Errors in long double (ldbl-128ibm) rounding functions in glibc-2.4). By just removing the implementation and make the build select sysdeps/ieee754/ldbl-128ibm/s_ceill.c instead fixes the failing math. Fixes BZ#16701.
2014-03-14Add truncl tests related to BZ#16414Adhemerval Zanella
2014-03-11Fix nextafter overflow in non-default rounding modes (bug 16677).Joseph Myers
ISO C requires the result of nextafter to be independent of the rounding mode, even when underflow or overflow occurs. This patch fixes the bug in various nextafter implementations that, having done an overflowing computation to force an overflow exception (correct), they then return the result of that computation rather than an infinity computed some other way (incorrect, when the overflowing result of arithmetic with that sign and rounding mode is finite but the correct result is infinite) - generally by falling through to existing code to return a value that in fact is correct for this case (but was computed by an integer increment and so without generating the exceptions required). Having fixed the bug, the previously deferred conversion of nextafter testing in libm-test.inc to ALL_RM_TEST is also included. Tested x86_64 and x86; also spot-checked results of nextafter tests for powerpc32 and mips64 to test the ldbl-128ibm and ldbl-128 changes. (The m68k change is untested.) [BZ #16677] * math/s_nextafter.c (__nextafter): Do not return value from overflowing computation. * sysdeps/i386/fpu/s_nextafterl.c (__nextafterl): Likewise. * sysdeps/ieee754/flt-32/s_nextafterf.c (__nextafterf): Likewise. * sysdeps/ieee754/ldbl-128/s_nextafterl.c (__nextafterl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise. * sysdeps/m68k/m680x0/fpu/s_nextafterl.c (__nextafterl): Likewise. * math/libm-test.inc (nextafter_test): Use ALL_RM_TEST.
2014-03-08Add libm-test.inc macro for all-rounding-modes testing.Joseph Myers
This patch adds support in libm-test.inc for automatically running tests of a function in all rounding modes, in the form of a macro ALL_RM_TEST to loop over all rounding modes when running tests of a function, and uses it for functions whose results should always be independent of the rounding mode. Conversion of tests of nextafter to ALL_RM_TEST was deferred because trying that conversion showed up bug 16677. (Finding such a bug of course illustrates the point of testing more systematically in all rounding modes rather than only reactively when bugs get reported in a particular function in a non-default mode.) Conversion of tests where results can depend on the rounding mode will follow once I add gen-libm-test.pl support for using different initializers for the expected results for different rounding modes (again, some conversions may need deferring until bugs are fixed, depending on how straightforward they are to XFAIL in a particular context). Some existing tests get run five times rather than four, with round-to-nearest tests both run in that as default rounding mode and also with it explicitly set with fesetround (FE_TONEAREST). This duplication doesn't seem particularly useful, so ALL_RM_TEST only runs tests four times. Tested x86_64 and x86. * math/libm-test.inc (ALL_RM_TEST): New macro. (ceil_test): Use ALL_RM_TEST. (cimag_test): Likewise. (conj_test): Likewise. (copysign_test): Likewise. (cproj_test): Likewise. (creal_test): Likewise. (fabs_test): Likewise. (floor_test): Likewise. (fmax_test): Likewise. (fmin_test): Likewise. (fmod_test): Likewise. (fpclassify_test): Likewise. (frexp_test): Likewise. (ilogb_test): Likewise. (isfinite_test): Likewise. (finite_test): Likewise. (isgreater_test): Likewise. (isgreaterequal_test): Likewise. (isinf_test): Likewise. (isless_test): Likewise. (islessequal_test): Likewise. (islessgreater_test): Likewise. (isnan_test): Likewise. (isnormal_test): Likewise. (issignaling_test): Likewise. (isunordered_test): Likewise. (logb_test): Likewise. (logb_downward_test_data): Remove. (logb_test_downward): Likewise. (lround_test): Use ALL_RM_TEST. (llround_test): Likewise. (modf_test): Likewise. (nexttoward_test): Likewise. (remainder_test): Likewise. (drem_test): Likewise. (remainder_tonearest_test_data): Likewise. (remainder_test_tonearest): Likewise. (drem_test_tonearest): Likewise. (remainder_towardzero_test_data): Likewise. (remainder_test_towardzero): Likewise. (drem_test_towardzero): Likewise. (remainder_downward_test_data): Likewise. (remainder_test_downward): Likewise. (drem_test_downward): Likewise. (remainder_upward_test_data): Likewise. (remainder_test_upward): Likewise. (drem_test_upward): Likewise. (remquo_test): Use ALL_RM_TEST. Remove comment about x. (round_test): Use ALL_RM_TEST. (signbit_test): Likewise. (trunc_test): Likewise. (significand_test): Likewise. (main): Don't call removed functions.
2014-03-06Prepare libm-test.inc structures for multi-rounding-mode testing.Joseph Myers
At present, libm-test.inc tests are run in multiple rounding modes by having a separate array for each rounding mode (which might or might not have the same test inputs as the other such arrays), a separate function calling a RUN_TEST_LOOP_* macro over that array, and a separate call to that function in main. The number of functions tested in multiple rounding modes has gradually increased as rounding-mode-specific bugs have been found and fixed in different functions. It would be better to be able to use a single macro call, in a single function, to run tests for a function over all rounding modes, with this being done for all libm functions except in cases where it's deferred until some bugs can be fixed because XFAILing all affected tests would be painful (that's why the full set of pow tests isn't currently run in all rounding modes). This patch helps prepare for that by making the structures storing expected results for tests store results for all four rounding modes. After this patch, the results for all modes are just duplicates, but tests access the appropriate field in the structure, so helping to pave the way for when the fields stop being duplicates and multiple rounding modes can be tested from a single array. Tests might in future specify a single set of results, to be used in all rounding modes; separate results for each rounding mode, specified manually; or use of auto-libm-tests-* to generate results for each rounding mode. Tested x86_64. * math/libm-test.inc (struct test_f_f_data): Move expected results into structure for each rounding mode. (struct test_ff_f_data): Likewise. (struct test_ff_f_data_nexttoward): Likewise. (struct test_fi_f_data): Likewise. (struct test_fl_f_data): Likewise. (struct test_if_f_data): Likewise. (struct test_fff_f_data): Likewise. (struct test_c_f_data): Likewise. (struct test_f_f1_data): Likewise. (struct test_fF_f1_data): Likewise. (struct test_ffI_f1_data): Likewise. (struct test_c_c_data): Likewise. (struct test_cc_c_data): Likewise. (struct test_f_i_data): Likewise. (struct test_ff_i_data): Likewise. (struct test_f_l_data): Likewise. (struct test_f_L_data): Likewise. (struct test_fFF_11_data): Likewise. (RM_): New macro. (RM_FE_DOWNWARD): Likewise. (RM_FE_TONEAREST): Likewise. (RM_FE_TOWARDZERO): Likewise. (RM_FE_UPWARD): Likewise. (RUN_TEST_LOOP_f_f): Update references to expected results. (RUN_TEST_LOOP_2_f): Likewise. (RUN_TEST_LOOP_fff_f): Likewise. (RUN_TEST_LOOP_c_f): Likewise. (RUN_TEST_LOOP_f_f1): Likewise. (RUN_TEST_LOOP_fF_f1): Likewise. (RUN_TEST_LOOP_fI_f1): Likewise. (RUN_TEST_LOOP_ffI_f1): Likewise. (RUN_TEST_LOOP_c_c): Likewise. (RUN_TEST_LOOP_cc_c): Likewise. (RUN_TEST_LOOP_f_i): Likewise. (RUN_TEST_LOOP_f_i_tg): Likewise. (RUN_TEST_LOOP_ff_i_tg): Likewise. (RUN_TEST_LOOP_f_b): Likewise. (RUN_TEST_LOOP_f_b_tg): Likewise. (RUN_TEST_LOOP_f_l): Likewise. (RUN_TEST_LOOP_f_L): Likewise. (RUN_TEST_LOOP_fFF_11): Likewise. * math/gen-libm-test.pl (parse_args): Output four copies of expected results for each test.
2014-03-05Automatically check sanity of ulps from libm tests.Joseph Myers
This patch makes libm-test.inc apply sanity checks to ulps values resulting from tests, or found in libm-test-ulps files, to avoid the need for manual checking/editing of new ulps for cases that are excessively large or involve functions that should not have any ulps. For IBM long double, errors must be at most 14ulp (the largest currently checked-in value), or at most 3ulp (the documented error bound for division) in the case of exactly-determined functions; for other formats, the limits are 9ulp (also the largest currently checked-in value) and 0ulp. Limits from ulps files are saturated to those bounds, and regen-ulps will ignore any errors outside those bounds. (Thus if, say, you have an architecture-specific problem with fma, the tests can still be XFAILed in auto-libm-test-in, but errors outside the permitted range can no longer be listed in libm-test-ulps.) Tested x86_64. * math/libm-test.inc (max_valid_error): New variable. (init_max_error): Take new argument specifying whether function results are exactly determined. Set max_valid_error and bound other variables for errors based on this argument. (set_max_error): Do not record results above max_valid_error. (check_float_internal): Only accept errors of up to 0.5ulps if also at most max_valid_error. (START): Take new argument EXACT and pass it to init_max_error. (acos_test): Update call to START. (acos_test_tonearest): Likewise. (acos_test_towardzero): Likewise. (acos_test_downward): Likewise. (acos_test_upward): Likewise. (acosh_test): Likewise. (asin_test): Likewise. (asin_test_tonearest): Likewise. (asin_test_towardzero): Likewise. (asin_test_downward): Likewise. (asin_test_upward): Likewise. (asinh_test): Likewise. (atan_test): Likewise. (atanh_test): Likewise. (atan2_test): Likewise. (cabs_test): Likewise. (cacos_test): Likewise. (cacosh_test): Likewise. (carg_test): Likewise. (casin_test): Likewise. (casinh_test): Likewise. (catan_test): Likewise. (catanh_test): Likewise. (cbrt_test): Likewise. (ccos_test): Likewise. (ccosh_test): Likewise. (ceil_test): Likewise. (cexp_test): Likewise. (cimag_test): Likewise. (clog_test): Likewise. (clog10_test): Likewise. (conj_test): Likewise. (copysign_test): Likewise. (cos_test): Likewise. (cos_test_tonearest): Likewise. (cos_test_towardzero): Likewise. (cos_test_downward): Likewise. (cos_test_upward): Likewise. (cosh_test): Likewise. (cosh_test_tonearest): Likewise. (cosh_test_towardzero): Likewise. (cosh_test_downward): Likewise. (cosh_test_upward): Likewise. (cpow_test): Likewise. (cproj_test): Likewise. (creal_test): Likewise. (csin_test): Likewise. (csinh_test): Likewise. (csqrt_test): Likewise. (ctan_test): Likewise. (ctan_test_tonearest): Likewise. (ctan_test_towardzero): Likewise. (ctan_test_downward): Likewise. (ctan_test_upward): Likewise. (ctanh_test): Likewise. (ctanh_test_tonearest): Likewise. (ctanh_test_towardzero): Likewise. (ctanh_test_downward): Likewise. (ctanh_test_upward): Likewise. (erf_test): Likewise. (erfc_test): Likewise. (exp_test): Likewise. (exp_test_tonearest): Likewise. (exp_test_towardzero): Likewise. (exp_test_downward): Likewise. (exp_test_upward): Likewise. (exp10_test): Likewise. (exp10_test_tonearest): Likewise. (exp10_test_towardzero): Likewise. (exp10_test_downward): Likewise. (exp10_test_upward): Likewise. (pow10_test): Likewise. (exp2_test): Likewise. (expm1_test): Likewise. (expm1_test_tonearest): Likewise. (expm1_test_towardzero): Likewise. (expm1_test_downward): Likewise. (expm1_test_upward): Likewise. (fabs_test): Likewise. (fdim_test): Likewise. (floor_test): Likewise. (fma_test): Likewise. (fma_test_towardzero): Likewise. (fma_test_downward): Likewise. (fma_test_upward): Likewise. (fmax_test): Likewise. (fmin_test): Likewise. (fmod_test): Likewise. (fpclassify_test): Likewise. (frexp_test): Likewise. (hypot_test): Likewise. (ilogb_test): Likewise. (isfinite_test): Likewise. (finite_test): Likewise. (isgreater_test): Likewise. (isgreaterequal_test): Likewise. (isinf_test): Likewise. (isless_test): Likewise. (islessequal_test): Likewise. (islessgreater_test): Likewise. (isnan_test): Likewise. (isnormal_test): Likewise. (issignaling_test): Likewise. (isunordered_test): Likewise. (j0_test): Likewise. (j1_test): Likewise. (jn_test): Likewise. (ldexp_test): Likewise. (lgamma_test): Likewise. (gamma_test): Likewise. (lrint_test): Likewise. (lrint_test_tonearest): Likewise. (lrint_test_towardzero): Likewise. (lrint_test_downward): Likewise. (lrint_test_upward): Likewise. (llrint_test): Likewise. (llrint_test_tonearest): Likewise. (llrint_test_towardzero): Likewise. (llrint_test_downward): Likewise. (llrint_test_upward): Likewise. (log_test): Likewise. (log10_test): Likewise. (log1p_test): Likewise. (log2_test): Likewise. (logb_test): Likewise. (logb_test_downward): Likewise. (lround_test): Likewise. (llround_test): Likewise. (modf_test): Likewise. (nearbyint_test): Likewise. (nextafter_test): Likewise. (nexttoward_test): Likewise. (pow_test): Likewise. (pow_test_tonearest): Likewise. (pow_test_towardzero): Likewise. (pow_test_downward): Likewise. (pow_test_upward): Likewise. (remainder_test): Likewise. (drem_test): Likewise. (remainder_test_tonearest): Likewise. (drem_test_tonearest): Likewise. (remainder_test_towardzero): Likewise. (drem_test_towardzero): Likewise. (remainder_test_downward): Likewise. (drem_test_downward): Likewise. (remainder_test_upward): Likewise. (drem_test_upward): Likewise. (remquo_test): Likewise. (rint_test): Likewise. (rint_test_tonearest): Likewise. (rint_test_towardzero): Likewise. (rint_test_downward): Likewise. (rint_test_upward): Likewise. (round_test): Likewise. (scalb_test): Likewise. (scalbn_test): Likewise. (scalbln_test): Likewise. (signbit_test): Likewise. (sin_test): Likewise. (sin_test_tonearest): Likewise. (sin_test_towardzero): Likewise. (sin_test_downward): Likewise. (sin_test_upward): Likewise. (sincos_test): Likewise. (sinh_test): Likewise. (sinh_test_tonearest): Likewise. (sinh_test_towardzero): Likewise. (sinh_test_downward): Likewise. (sinh_test_upward): Likewise. (sqrt_test): Likewise. (sqrt_test_tonearest): Likewise. (sqrt_test_towardzero): Likewise. (sqrt_test_downward): Likewise. (sqrt_test_upward): Likewise. (tan_test): Likewise. (tan_test_tonearest): Likewise. (tan_test_towardzero): Likewise. (tan_test_downward): Likewise. (tan_test_upward): Likewise. (tanh_test): Likewise. (tgamma_test): Likewise. (trunc_test): Likewise. (y0_test): Likewise. (y1_test): Likewise. (yn_test): Likewise. (significand_test): Likewise.
2014-03-05Don't include individual test ulps in libm-test-ulps.Joseph Myers
As recently discussed <https://sourceware.org/ml/libc-alpha/2014-02/msg00670.html>, it doesn't seem particularly useful for libm-test-ulps files to contain huge amounts of data on ulps for individual tests; just the global maximum observed ulps for each function, together with the verification of exceptions, errno and special results such as infinities and NaNs for each test, suffices to verify that a function's behavior on the given test inputs is within the expected accuracy. Removing this data reduces source tree churn caused by updates to these files when libm tests are added, and reduces the frequency with which testsuite additions actually need libm-test-ulps changes at all. Accordingly, this patch removes that data, so that individual tests get checked against the global bounds for the given function and only generate an error if those are exceeded. Tested x86_64 (including verifying that if an ulps value is artificially reduced, the tests do indeed fail as they should and "make regen-ulps" generates the expected changes). * math/libm-test.inc (struct ulp_data): Don't refer to ulps for individual tests in comment. (libm-test-ulps.h): Don't refer to test_ulps in #include comment. (prev_max_error): New variable. (prev_real_max_error): Likewise. (prev_imag_max_error): Likewise. (compare_ulp_data): Don't refer to test names in comment. (find_test_ulps): Remove function. (find_function_ulps): Likewise. (find_complex_function_ulps): Likewise. (init_max_error): Take function name as argument. Look up ulps for that function. (print_ulps): Remove function. (print_max_error): Use prev_max_error instead of calling find_function_ulps. (print_complex_max_error): Use prev_real_max_error and prev_imag_max_error instead of calling find_complex_function_ulps. (check_float_internal): Take max_ulp parameter instead of calling find_test_ulps. Don't call print_ulps. (check_float): Update call to check_float_internal. (check_complex): Update calls to check_float_internal. (START): Pass argument to init_max_error. * math/gen-libm-test.pl (%results): Don't include "kind" information. (parse_ulps): Don't handle ulps of individual tests. (print_ulps_file): Likewise. (output_ulps): Likewise. * math/README.libm-test: Update. * manual/libm-err-tab.pl (parse_ulps): Don't handle ulps of individual tests. * sysdeps/aarch64/libm-test-ulps: Remove individual test ulps. * sysdeps/alpha/fpu/libm-test-ulps: Likewise. * sysdeps/arm/libm-test-ulps: Likewise. * sysdeps/i386/fpu/libm-test-ulps: Likewise. * sysdeps/ia64/fpu/libm-test-ulps: Likewise. * sysdeps/m68k/coldfire/fpu/libm-test-ulps: Likewise. * sysdeps/m68k/m680x0/fpu/libm-test-ulps: Likewise. * sysdeps/microblaze/libm-test-ulps: Likewise. * sysdeps/mips/mips32/libm-test-ulps: Likewise. * sysdeps/mips/mips64/libm-test-ulps: Likewise. * sysdeps/powerpc/fpu/libm-test-ulps: Likewise. * sysdeps/powerpc/nofpu/libm-test-ulps: Likewise. * sysdeps/s390/fpu/libm-test-ulps: Likewise. * sysdeps/sh/libm-test-ulps: Likewise. * sysdeps/sparc/fpu/libm-test-ulps: Likewise. * sysdeps/tile/libm-test-ulps: Likewise. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise. * sysdeps/hppa/fpu/libm-test-ulps: Remove individual test ulps.
2014-03-04Fix libm-test.inc:print_complex_max_error handling of some error cases.Joseph Myers
When regenerating ulps incrementally with "make regen-ulps", the resulting diffs should only increase existing ulps, never decrease them. This allows successive uses of "make regen-ulps" on different hardware or with different compiler configurations to accumulate ulps that are sufficient for tests to pass in a variety of configurations. However, sometimes changes that decrease ulps are wrongly generated; thus, when applying <https://sourceware.org/ml/libc-alpha/2014-02/msg00605.html> I had to remove such changes manually. The problem is print_complex_max_error. If the ulps for either the real or the imaginary part of a function are out of range, this function prints the maximum ulps seen for both parts, which then replace those previously in libm-test-ulps. So if the ulps for one part are bigger than recorded before, but those for the other part are smaller, the diffs reduce existing ulps. This patch fixes the logic so that only increased ulps get printed. Tested x86_64 ("make math/tests", and "make regen-ulps" in a situation with ulps manually modified so one part would go up and the other down, to confirm the changes have the intended effect then). * math/libm-test.inc (print_complex_max_error): Check separately whether real and imaginary errors are within allowed range and pass 0 to print_complex_function_ulps instead of value within allowed range.
2014-02-19Move tests of clog10 from libm-test.inc to auto-libm-test-in.Joseph Myers
This patch moves tests of clog10 to auto-libm-test-in. Note that this means gen-auto-libm-tests will now depend on the recent MPC 1.0.2 release which added a fix for a bug that made gen-auto-libm-tests hang for clog10. (It still can't conveniently be used for cacos cacosh casin casinh catan catanh csin csinh because of extreme slowness of those functions for special cases in MPC; at least some slow cases of csin / csinh are fixed in MPC trunk, but not in a release.) Tested x86_64 and x86 and ulps updated accordingly. * math/auto-libm-test-in: Add tests of clog10. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (clog10_test_data): Use AUTO_TESTS_c_c. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2014-02-18Move tests of fma from libm-test.inc to auto-libm-test-in.Joseph Myers
This patch moves tests of fma to auto-libm-test-in, adding the required support to gen-auto-libm-tests. Because fma can have exact zero results depending on the rounding mode, results of fma cannot always be determined from a single value computed in higher precision with a sticky bit. Thus, this patch adds support for recomputing results with the original MPFR/MPC function in the case where an exact zero is involved. (This also affects some results for cpow; when we start testing cpow in all rounding modes, I think it will be most appropriate to make those tests use IGNORE_ZERO_INF_SIGN, since ISO C does not attempt to determine signs of zero results, or special caes in general, for cpow, and I think signs of zero for cpow are beyond the scope of glibc's accuracy goals.) Simply treating the existing test inputs for fma like those for other functions (i.e., as representing the given value rounded up or down to any of the supported floating-point formats) increases the size of auto-libm-test-out by about 16MB (i.e., about half the file is fma test data). While rounded versions of tests are perfectly reasonable test inputs for fma, in this case having them seems excessive, so this patch allows functions to specify in gen-auto-libm-tests that the given test inputs are only to be interpreted exactly, not as corresponding to values rounded up and down. This reduces the size of the generated test data for fma to a more reasonable 2MB. A consequence of this patch is that fma is now tested for correct presence or absence of "inexact" exceptions, where previously this wasn't tested because I didn't want to try to add that test coverage manually to all the existing tests. As far as I know, the existing fma implementations are already correct in this regard. This patch provides the first cases where the gen-auto-libm-tests support for distinguishing before-rounding/after-rounding underflow actually produces separate entries in auto-libm-test-out (for functions without exactly determined results, the affected cases are all considered underflow-optional, so this only affects functions like fma with exactly determined results). I didn't see any signs of problems with this logic in the output. Tested x86_64 and x86. * math/auto-libm-test-in: Add tests of fma. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (fma_test_data): Use AUTO_TESTS_fff_f. (fma_towardzero_test_data): Likewise. (fma_downward_test_data): Likewise. (fma_upward_test_data): Likewise. * math/gen-auto-libm-tests.c (rounding_mode_desc): Add field mpc_mode. (rounding_modes): Add values for new field. (func_calc_method): Add value mpfr_fff_f. (func_calc_desc): Add mpfr_fff_f union field. (test_function): Add field exact_args. (FUNC): Add macro argument EXACT_ARGS. (FUNC_mpfr_f_f): Update call to FUNC. (FUNC_mpfr_f_f): Likewise. (FUNC_mpfr_ff_f): Likewise. (FUNC_mpfr_if_f): Likewise. (FUNC_mpc_c_f): Likewise. (FUNC_mpc_c_c): Likewise. (test_functions): Add fma. Update calls to FUNC. (handle_input_arg): Add argument exact_args. (add_test): Update call to handle_input_arg. (calc_generic_results): Add argument mode. Handle mpfr_fff_f. (output_for_one_input_case): Update call to calc_generic_results. Recalculate exact zero results in each rounding mode.
2014-01-01Update copyright notices with scripts/update-copyrightsAllan McRae
2013-12-21Fix x86 / x86_64 expl / expl10l wild results in directed rounding modes (bug ↵Joseph Myers
16356). This patch fixes bug 16356, bad results from x86 / x86_64 expl / exp10l in directed rounding modes, the most serious of the bugs shown up by my patch expanding libm test coverage. When I fixed bug 16293, I thought it was only necessary to set round-to-nearest when using frndint in expm1 functions, because in other cases the cancellation error from having the resulting fractional part close to 1 or -1 would not be significant. However, in expl and exp10l, the way the final fractional part gets computed (something more complicated than a simple subtraction, because more precision is needed than you'd get that way) can result in a value outside the range [-1, 1] when the argument to frndint was very close to an integer and was rounded the "wrong" way because of the rounding mode - and the f2xm1 instruction has undefined results if its argument is outside [-1, 1], so resulting in the large errors seen. So this patch removes the USE_AS_EXPM1L conditionals on the round-to-nearest settings, so all of expl, expm1l and exp10l now get round-to-nearest used for frndint (meaning the final fractional part can at most be slightly above 0.5 in magnitude). Associated tests of exp and exp10 are added and testing of exp10 in directed rounding modes enabled. Tested x86_64 and x86 and ulps updated accordingly. * sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL): Also set round-to-nearest for [!USE_AS_EXPM1L]. * sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL): Likewise. * math/auto-libm-test-in: Do not expect cosh tests to fail. Add more tests of exp and exp10. Expect some exp10 tests to miss exceptions or fail in directed rounding modes. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (exp10_tonearest_test_data): New array. (exp10_test_tonearest): New function. (exp10_towardzero_test_data): New array. (exp10_test_towardzero): New function. (exp10_downward_test_data): New array. (exp10_test_downward): New function. (exp10_upward_test_data): New array. (exp10_test_upward): New function. (main): Call the new functions. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-20Add more libm-test coverage of [a-c]* real functions.Joseph Myers
Various libm functions have inadequate test coverage in libm-test.inc / auto-libm-test-in - failing to cover all the usual special cases (infinities, NaNs, zero, large and small finite values, subnormals) as well as a reasonable range of ordinary inputs and, where appropriate, inputs close to the thresholds for underflow and overflow. This patch improves test coverage for real functions [a-c]* (with the expectation of adding more coverage for other functions later). Tested x86_64 and x86 and ulps updated accordingly (and eight glibc bugs and one C11 DR filed for issues found in the process). * math/auto-libm-test-in: Add more tests of acos, acosh, asin, asinh, atan, atan2, atanh, cbrt, cos and cosh. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (acosh_test_data): Add more tests. (atanh_test_data): Likewise. (ceil_test_data): Likewise. (copysign_test_data): Likewise. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-20Move tests of cpow from libm-test.inc to auto-libm-test-in.Joseph Myers
This patch moves tests of cpow to auto-libm-test-in, adding the required support to gen-auto-libm-tests. Tested x86_64 and x86 and ulps updated accordingly. * math/auto-libm-test-in: Add tests of cpow. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (cpow_test_data): Use AUTO_TESTS_cc_c. * * math/gen-auto-libm-tests.c (func_calc_method): Add value mpc_cc_c. (func_calc_desc): Add mpc_cc_c union field. (test_functions): Add cpow. (special_fill_2pi): New function. (special_real_inputs): Add 2pi. (calc_generic_results): Handle mpc_cc_c. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-20Move various TEST_c_c tests from libm-test.inc to auto-libm-test-inc.Joseph Myers
This patch moves tests of ccos, ccosh, cexp, clog, csqrt, ctan and ctanh to auto-libm-test-in, adding the required support to gen-auto-libm-tests. Other TEST_c_c functions aren't moved for now (although the relevant table entries are put in gen-auto-libm-tests for it to know how to handle them): clog10 because of a known MPC bug causing it to hang for at least some pure imaginary inputs (fixed in SVN, but I'd rather not rely on unreleased versions of MPFR or MPC even if relying on very recent releases); the inverse trig and hyperbolic functions because of known slowness in special cases; and csin / csinh because of observed slowness that I need to investigate and report to the MPC maintainers. Slowness can be bypassed by moving to incremental generation (only for new / changed tests) rather than regenerating the whole of auto-libm-test-out every time, but that needs implementing. (This patch takes the time for running gen-auto-libm-tests from about one second to seven, on my system, which I think is reasonable. The slow functions would make it take several minutes at least, which seems unreasonable.) Tested x86_64 and x86 and ulps updated accordingly. * math/auto-libm-test-in: Add tests of ccos, ccosh, cexp, clog, csqrt, ctan and ctanh. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (TEST_COND_x86_64): New macro. (TEST_COND_x86): Likewise. (ccos_test_data): Use AUTO_TESTS_c_c. (ccosh_test_data): Likewise. (cexp_test_data): Likewise. (clog_test_data): Likewise. (csqrt_test_data): Likewise. (ctan_test_data): Likewise. (ctan_tonearest_test_data): Likewise. (ctan_towardzero_test_data): Likewise. (ctan_downward_test_data): Likewise. (ctan_upward_test_data): Likewise. (ctanh_test_data): Likewise. (ctanh_tonearest_test_data): Likewise. (ctanh_towardzero_test_data): Likewise. (ctanh_downward_test_data): Likewise. (ctanh_upward_test_data): Likewise. * math/gen-auto-libm-tests.c (func_calc_method): Add value mpc_c_c. (func_calc_desc): Add mpc_c_c union field. (FUNC_mpc_c_c): New macro. (test_functions): Add cacos, cacosh, casin, casinh, catan, catanh, ccos, ccosh, cexp, clog, clog10, csin, csinh, csqrt, ctan and ctanh. (special_fill_min_subnorm_p120): New function. (special_real_inputs): Add min_subnorm_p120. (calc_generic_results): Handle mpc_c_c. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-19Move tests of cabs and carg from libm-test.inc to auto-libm-test-in.Joseph Myers
This patch moves tests of cabs and carg to auto-libm-test-in, adding the required support to gen-auto-libm-tests. Tested x86_64 and x86; no ulps updates needed. * math/auto-libm-test-in: Add tests of cabs and carg. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (cabs_test_data): Use AUTO_TESTS_c_f. (carg_test_data): Likewise. * math/gen-auto-libm-tests.c (func_calc_method): Add value mpc_c_f. (func_calc_desc): Add mpc_c_f union field. (test_functions): Add cabs and carg. (calc_generic_results): Handle mpc_c_f.
2013-12-19Move tests of sincos from libm-test.inc to auto-libm-test-in.Joseph Myers
This patch moves tests of sincos to auto-libm-test-in, adding the required support to gen-auto-libm-tests. Tested x86_64 and x86 and ulps updated accordingly. (auto-libm-test-out diffs omitted below.) * math/auto-libm-test-in: Add tests of sincos. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (sincos_test_data): Use AUTO_TESTS_fFF_11. * math/gen-auto-libm-tests.c (func_calc_method): Add value mpfr_f_11. (func_calc_desc): Add mpfr_f_11 union field. (test_functions): Add sincos. (calc_generic_results): Handle mpfr_f_11. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-19Fix x86/x86_64 expm1 inaccuracy near 0 in directed rounding modes (bug 16293).Joseph Myers
Bug 16293 is inaccuracy of x86/x86_64 versions of expm1, near 0 in directed rounding modes, that arises from frndint rounding the exponent to 1 or -1 instead of 0, resulting in large cancellation error. This inaccuracy in turn affects other functions such as sinh that use expm1. This patch fixes the problem by setting round-to-nearest mode temporarily around the affected calls to frndint. I don't think this is needed for other uses of frndint, such as in exp itself, as only for expm1 is the cancellation error significant. Tested x86_64 and x86 and ulps updated accordingly. * sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Set round-to-nearest mode when using frndint. * sysdeps/i386/fpu/s_expm1.S (__expm1): Likewise. * sysdeps/i386/fpu/s_expm1f.S (__expm1f): Likewise. * sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Likewise. * math/auto-libm-test-in: Add more tests of expm1. Do not expect sinh test to fail. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (TEST_COND_x86_64): Remove macro. (TEST_COND_x86): Likewise. (expm1_tonearest_test_data): New array. (expm1_test_tonearest): New function. (expm1_towardzero_test_data): New array. (expm1_test_towardzero): New function. (expm1_downward_test_data): New array. (expm1_test_downward): New function. (expm1_upward_test_data): New array. (expm1_test_upward): New function. (main): Run the new test functions. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-18Move tests of jn and yn from libm-test.inc to auto-libm-test-in.Joseph Myers
This patch moves tests of jn and yn to auto-libm-test-in, adding the required support for gen-auto-libm-tests (and adding a missing assertion there and fixing logic that was broken for functions with integer arguments). Tested x86_64 and x86 and ulps updated accordingly. * math/auto-libm-test-in: Add tests of jn and yn. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (jn_test_data): Use AUTO_TESTS_if_f. (yn_test_data): Likewise. * math/gen-auto-libm-tests.c (func_calc_method): Add value mpfr_if_f. (func_calc_desc): Add mpfr_if_f union field. (FUNC_mpfr_if_f): New macro. (test_functions): Add jn and yn. (calc_generic_results): Assert type of second input for mpfr_ff_f. Handle mpfr_if_f. (output_for_one_input_case): Disable all checking for arguments fitting floating-point types in case of an integer argument. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
2013-12-16Move tests of atan2, hypot and pow from libm-test.inc to auto-libm-test-in.Joseph Myers
2013-12-08Move tests of lgamma from libm-test.inc to auto-libm-test-in.Joseph Myers
2013-12-05Move TEST_f_f tests for [l-y]* functions from libm-test.inc to ↵Joseph Myers
auto-libm-test-in.
2013-12-04Fix Bessel function error handling (bug 6807, bug 15901).Joseph Myers
2013-12-03Move TEST_f_f tests for [e-j]* functions from libm-test.inc to ↵Joseph Myers
auto-libm-test-in.
2013-11-30Move TEST_f_f tests for [a-c]* functions from libm-test.inc to ↵Joseph Myers
auto-libm-test-in.
2013-11-29Fix exp10 errno setting on underflow (bug 6787).Joseph Myers
2013-11-29Test sqrt in all rounding modes.Joseph Myers
2013-11-29Start generating libm tests automatically with MPFR.Joseph Myers
2013-11-16Test signs of NaNs in libm-test.inc where appropriate.Joseph Myers
2013-11-16Add libm-test support for ignored return value, add more lrint / llrint / ↵Joseph Myers
lround / llround tests.
2013-11-16Replace libm-test.inc TEST_INLINE conditionals with NO_TEST_INLINE flag.Joseph Myers
2013-11-16Make libm-test.inc check for "inexact" exceptions for NaN argument.Joseph Myers
2013-10-04PowerPC floating point little-endian [4 of 15]Alan Modra
http://sourceware.org/ml/libc-alpha/2013-08/msg00084.html Another batch of ieee854 macros and union replacement. These four files also have bugs fixed with this patch. The fact that the two doubles in an IBM long double may have different signs means that negation and absolute value operations can't just twiddle one sign bit as you can with ieee864 style extended double. fmodl, remainderl, erfl and erfcl all had errors of this type. erfl also returned +1 for large magnitude negative input where it should return -1. The hypotl error is innocuous since the value adjusted twice is only used as a flag. The e_hypotl.c tests for large "a" and small "b" are mutually exclusive because we've already exited when x/y > 2**120. That allows some further small simplifications. [BZ #15734], [BZ #15735] * sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Rewrite all uses of ieee875 long double macros and unions. Simplify test for 0.0L. Correct |x|<|y| and |x|=|y| test. Use ldbl_extract_mantissa value for ix,iy exponents. Properly normalize after ldbl_extract_mantissa, and don't add hidden bit already handled. Don't treat low word of ieee854 mantissa like low word of IBM long double and mask off bit when testing for zero. * sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl): Rewrite all uses of ieee875 long double macros and unions. Simplify tests for 0.0L and inf. Correct double adjustment of k. Delete dead code adjusting ha,hb. Simplify code setting kld. Delete two600 and two1022, instead use their values. Recognise that tests for large "a" and small "b" are mutually exclusive. Rename vars. Comment. * sysdeps/ieee754/ldbl-128ibm/e_remainderl.c (__ieee754_remainderl): Rewrite all uses of ieee875 long double macros and unions. Simplify test for 0.0L and nan. Correct negation. * sysdeps/ieee754/ldbl-128ibm/s_erfl.c (__erfl): Rewrite all uses of ieee875 long double macros and unions. Correct output for large magnitude x. Correct absolute value calculation. (__erfcl): Likewise. * math/libm-test.inc: Add tests for errors discovered in IBM long double versions of fmodl, remainderl, erfl and erfcl.
2013-09-19New test cases for sin and cos for multiple precision fallbackSiddhesh Poyarekar
2013-09-03Fix lgammaf spurious underflow (bug 15427).Joseph Myers
2013-09-02Fix spurious jnf underflows (bug 14155).Joseph Myers
2013-08-23Fix cexp (NaN + i0) (bug 15532).Joseph Myers
2013-08-21Fix fdim handling of infinities (bug 15797).Joseph Myers
2013-08-20Fix cproj handling of (finite, NaN) arguments (bug 15531).Joseph Myers