aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/powerpc/fpu/e_sqrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/powerpc/fpu/e_sqrtf.c')
-rw-r--r--sysdeps/powerpc/fpu/e_sqrtf.c150
1 files changed, 0 insertions, 150 deletions
diff --git a/sysdeps/powerpc/fpu/e_sqrtf.c b/sysdeps/powerpc/fpu/e_sqrtf.c
deleted file mode 100644
index 65d27b4d42..0000000000
--- a/sysdeps/powerpc/fpu/e_sqrtf.c
+++ /dev/null
@@ -1,150 +0,0 @@
-/* Single-precision floating point square root.
- Copyright (C) 1997-2017 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <math.h>
-#include <math_private.h>
-#include <fenv_libc.h>
-#include <inttypes.h>
-#include <stdint.h>
-#include <sysdep.h>
-#include <ldsodefs.h>
-
-#ifndef _ARCH_PPCSQ
-static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */
-static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
-static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
-static const float two48 = 281474976710656.0;
-static const float twom24 = 5.9604644775390625e-8;
-extern const float __t_sqrt[1024];
-
-/* The method is based on a description in
- Computation of elementary functions on the IBM RISC System/6000 processor,
- P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
- Basically, it consists of two interleaved Newton-Raphson approximations,
- one to find the actual square root, and one to find its reciprocal
- without the expense of a division operation. The tricky bit here
- is the use of the POWER/PowerPC multiply-add operation to get the
- required accuracy with high speed.
-
- The argument reduction works by a combination of table lookup to
- obtain the initial guesses, and some careful modification of the
- generated guesses (which mostly runs on the integer unit, while the
- Newton-Raphson is running on the FPU). */
-
-float
-__slow_ieee754_sqrtf (float x)
-{
- const float inf = a_inf.value;
-
- if (x > 0)
- {
- if (x != inf)
- {
- /* Variables named starting with 's' exist in the
- argument-reduced space, so that 2 > sx >= 0.5,
- 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
- Variables named ending with 'i' are integer versions of
- floating-point values. */
- float sx; /* The value of which we're trying to find the square
- root. */
- float sg, g; /* Guess of the square root of x. */
- float sd, d; /* Difference between the square of the guess and x. */
- float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
- float sy2; /* 2*sy */
- float e; /* Difference between y*g and 1/2 (note that e==se). */
- float shx; /* == sx * fsg */
- float fsg; /* sg*fsg == g. */
- fenv_t fe; /* Saved floating-point environment (stores rounding
- mode and whether the inexact exception is
- enabled). */
- uint32_t xi, sxi, fsgi;
- const float *t_sqrt;
-
- GET_FLOAT_WORD (xi, x);
- fe = fegetenv_register ();
- relax_fenv_state ();
- sxi = (xi & 0x3fffffff) | 0x3f000000;
- SET_FLOAT_WORD (sx, sxi);
- t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
- sg = t_sqrt[0];
- sy = t_sqrt[1];
-
- /* Here we have three Newton-Raphson iterations each of a
- division and a square root and the remainder of the
- argument reduction, all interleaved. */
- sd = -__builtin_fmaf (sg, sg, -sx);
- fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
- sy2 = sy + sy;
- sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to
- sqrt(sx). */
- e = -__builtin_fmaf (sy, sg, -almost_half);
- SET_FLOAT_WORD (fsg, fsgi);
- sd = -__builtin_fmaf (sg, sg, -sx);
- sy = __builtin_fmaf (e, sy2, sy);
- if ((xi & 0x7f800000) == 0)
- goto denorm;
- shx = sx * fsg;
- sg = __builtin_fmaf (sy, sd, sg); /* 32-bit approximation to
- sqrt(sx), but perhaps
- rounded incorrectly. */
- sy2 = sy + sy;
- g = sg * fsg;
- e = -__builtin_fmaf (sy, sg, -almost_half);
- d = -__builtin_fmaf (g, sg, -shx);
- sy = __builtin_fmaf (e, sy2, sy);
- fesetenv_register (fe);
- return __builtin_fmaf (sy, d, g);
- denorm:
- /* For denormalised numbers, we normalise, calculate the
- square root, and return an adjusted result. */
- fesetenv_register (fe);
- return __slow_ieee754_sqrtf (x * two48) * twom24;
- }
- }
- else if (x < 0)
- {
- /* For some reason, some PowerPC32 processors don't implement
- FE_INVALID_SQRT. */
-#ifdef FE_INVALID_SQRT
- feraiseexcept (FE_INVALID_SQRT);
-
- fenv_union_t u = { .fenv = fegetenv_register () };
- if ((u.l & FE_INVALID) == 0)
-#endif
- feraiseexcept (FE_INVALID);
- x = a_nan.value;
- }
- return f_washf (x);
-}
-#endif /* _ARCH_PPCSQ */
-
-#undef __ieee754_sqrtf
-float
-__ieee754_sqrtf (float x)
-{
- double z;
-
-#ifdef _ARCH_PPCSQ
- asm ("fsqrts %0,%1\n" :"=f" (z):"f" (x));
-#else
- z = __slow_ieee754_sqrtf (x);
-#endif
-
- return z;
-}
-strong_alias (__ieee754_sqrtf, __sqrtf_finite)