aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128ibm/e_acoshl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/e_acoshl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/e_acoshl.c62
1 files changed, 0 insertions, 62 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/e_acoshl.c b/sysdeps/ieee754/ldbl-128ibm/e_acoshl.c
deleted file mode 100644
index cab1da9995..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/e_acoshl.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/* @(#)e_acosh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_acosh(x)
- * Method :
- * Based on
- * acosh(x) = log [ x + sqrt(x*x-1) ]
- * we have
- * acosh(x) := log(x)+ln2, if x is large; else
- * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- * acosh(x) is NaN with signal if x<1.
- * acosh(NaN) is NaN without signal.
- */
-
-#include <math.h>
-#include <math_private.h>
-
-static const long double
-one = 1.0L,
-ln2 = M_LN2l;
-
-long double
-__ieee754_acoshl(long double x)
-{
- long double t;
- int64_t hx;
- uint64_t lx;
- double xhi, xlo;
-
- ldbl_unpack (x, &xhi, &xlo);
- EXTRACT_WORDS64 (hx, xhi);
- EXTRACT_WORDS64 (lx, xlo);
- if(hx<0x3ff0000000000000LL) { /* x < 1 */
- return (x-x)/(x-x);
- } else if(hx >=0x4370000000000000LL) { /* x >= 2**56 */
- if(hx >=0x7ff0000000000000LL) { /* x is inf of NaN */
- return x+x;
- } else
- return __ieee754_logl(x)+ln2; /* acosh(huge)=log(2x) */
- } else if (((hx-0x3ff0000000000000LL)|(lx&0x7fffffffffffffffLL))==0) {
- return 0.0; /* acosh(1) = 0 */
- } else if (hx > 0x4000000000000000LL) { /* 2**56 > x > 2 */
- t=x*x;
- return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
- } else { /* 1<x<2 */
- t = x-one;
- return __log1pl(t+__ieee754_sqrtl(2.0*t+t*t));
- }
-}
-strong_alias (__ieee754_acoshl, __acoshl_finite)