diff options
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/lgamma_productl.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128/lgamma_productl.c | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/sysdeps/ieee754/ldbl-128/lgamma_productl.c b/sysdeps/ieee754/ldbl-128/lgamma_productl.c new file mode 100644 index 0000000000..cf0c778d93 --- /dev/null +++ b/sysdeps/ieee754/ldbl-128/lgamma_productl.c @@ -0,0 +1,82 @@ +/* Compute a product of 1 + (T/X), 1 + (T/(X+1)), .... + Copyright (C) 2015 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +#include <math.h> +#include <math_private.h> +#include <float.h> + +/* Calculate X * Y exactly and store the result in *HI + *LO. It is + given that the values are small enough that no overflow occurs and + large enough (or zero) that no underflow occurs. */ + +static void +mul_split (long double *hi, long double *lo, long double x, long double y) +{ +#ifdef __FP_FAST_FMAL + /* Fast built-in fused multiply-add. */ + *hi = x * y; + *lo = __builtin_fmal (x, y, -*hi); +#elif defined FP_FAST_FMAL + /* Fast library fused multiply-add, compiler before GCC 4.6. */ + *hi = x * y; + *lo = __fmal (x, y, -*hi); +#else + /* Apply Dekker's algorithm. */ + *hi = x * y; +# define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) + long double x1 = x * C; + long double y1 = y * C; +# undef C + x1 = (x - x1) + x1; + y1 = (y - y1) + y1; + long double x2 = x - x1; + long double y2 = y - y1; + *lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2; +#endif +} + +/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + + 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that + all the values X + 1, ..., X + N - 1 are exactly representable, and + X_EPS / X is small enough that factors quadratic in it can be + neglected. */ + +long double +__lgamma_productl (long double t, long double x, long double x_eps, int n) +{ + long double ret = 0, ret_eps = 0; + for (int i = 0; i < n; i++) + { + long double xi = x + i; + long double quot = t / xi; + long double mhi, mlo; + mul_split (&mhi, &mlo, quot, xi); + long double quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi); + /* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */ + long double rhi, rlo; + mul_split (&rhi, &rlo, ret, quot); + long double rpq = ret + quot; + long double rpq_eps = (ret - rpq) + quot; + long double nret = rpq + rhi; + long double nret_eps = (rpq - nret) + rhi; + ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot + + quot_lo + quot_lo * (ret + ret_eps)); + ret = nret; + } + return ret + ret_eps; +} |