diff options
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/e_acoshl.c')
-rw-r--r-- | sysdeps/ieee754/ldbl-128/e_acoshl.c | 61 |
1 files changed, 0 insertions, 61 deletions
diff --git a/sysdeps/ieee754/ldbl-128/e_acoshl.c b/sysdeps/ieee754/ldbl-128/e_acoshl.c deleted file mode 100644 index 7c79d437a2..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_acoshl.c +++ /dev/null @@ -1,61 +0,0 @@ -/* e_acoshl.c -- long double version of e_acosh.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_acoshl(x) - * Method : - * Based on - * acoshl(x) = logl [ x + sqrtl(x*x-1) ] - * we have - * acoshl(x) := logl(x)+ln2, if x is large; else - * acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else - * acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1. - * - * Special cases: - * acoshl(x) is NaN with signal if x<1. - * acoshl(NaN) is NaN without signal. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -one = 1.0, -ln2 = L(0.6931471805599453094172321214581766); - -_Float128 -__ieee754_acoshl(_Float128 x) -{ - _Float128 t; - u_int64_t lx; - int64_t hx; - GET_LDOUBLE_WORDS64(hx,lx,x); - if(hx<0x3fff000000000000LL) { /* x < 1 */ - return (x-x)/(x-x); - } else if(hx >=0x4035000000000000LL) { /* x > 2**54 */ - if(hx >=0x7fff000000000000LL) { /* x is inf of NaN */ - return x+x; - } else - return __ieee754_logl(x)+ln2; /* acoshl(huge)=logl(2x) */ - } else if(((hx-0x3fff000000000000LL)|lx)==0) { - return 0; /* acosh(1) = 0 */ - } else if (hx > 0x4000000000000000LL) { /* 2**28 > x > 2 */ - t=x*x; - return __ieee754_logl(2*x-one/(x+__ieee754_sqrtl(t-one))); - } else { /* 1<x<2 */ - t = x-one; - return __log1pl(t+__sqrtl(2*t+t*t)); - } -} -strong_alias (__ieee754_acoshl, __acoshl_finite) |