aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128/e_acoshl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128/e_acoshl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128/e_acoshl.c61
1 files changed, 0 insertions, 61 deletions
diff --git a/sysdeps/ieee754/ldbl-128/e_acoshl.c b/sysdeps/ieee754/ldbl-128/e_acoshl.c
deleted file mode 100644
index 7c79d437a2..0000000000
--- a/sysdeps/ieee754/ldbl-128/e_acoshl.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* e_acoshl.c -- long double version of e_acosh.c.
- * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_acoshl(x)
- * Method :
- * Based on
- * acoshl(x) = logl [ x + sqrtl(x*x-1) ]
- * we have
- * acoshl(x) := logl(x)+ln2, if x is large; else
- * acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else
- * acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- * acoshl(x) is NaN with signal if x<1.
- * acoshl(NaN) is NaN without signal.
- */
-
-#include <math.h>
-#include <math_private.h>
-
-static const _Float128
-one = 1.0,
-ln2 = L(0.6931471805599453094172321214581766);
-
-_Float128
-__ieee754_acoshl(_Float128 x)
-{
- _Float128 t;
- u_int64_t lx;
- int64_t hx;
- GET_LDOUBLE_WORDS64(hx,lx,x);
- if(hx<0x3fff000000000000LL) { /* x < 1 */
- return (x-x)/(x-x);
- } else if(hx >=0x4035000000000000LL) { /* x > 2**54 */
- if(hx >=0x7fff000000000000LL) { /* x is inf of NaN */
- return x+x;
- } else
- return __ieee754_logl(x)+ln2; /* acoshl(huge)=logl(2x) */
- } else if(((hx-0x3fff000000000000LL)|lx)==0) {
- return 0; /* acosh(1) = 0 */
- } else if (hx > 0x4000000000000000LL) { /* 2**28 > x > 2 */
- t=x*x;
- return __ieee754_logl(2*x-one/(x+__ieee754_sqrtl(t-one)));
- } else { /* 1<x<2 */
- t = x-one;
- return __log1pl(t+__sqrtl(2*t+t*t));
- }
-}
-strong_alias (__ieee754_acoshl, __acoshl_finite)