diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r-- | sysdeps/ieee754/dbl-64/mpa.c | 152 |
1 files changed, 76 insertions, 76 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c index c238ccf2af..a3feb175ed 100644 --- a/sysdeps/ieee754/dbl-64/mpa.c +++ b/sysdeps/ieee754/dbl-64/mpa.c @@ -80,14 +80,14 @@ __acr (const mp_no *x, const mp_no *y, int p) { long i; - if (X[0] == ZERO) + if (X[0] == 0) { - if (Y[0] == ZERO) + if (Y[0] == 0) i = 0; else i = -1; } - else if (Y[0] == ZERO) + else if (Y[0] == 0) i = 1; else { @@ -140,10 +140,10 @@ norm (const mp_no *x, double *y, int p) } else { - for (a = ONE, z[1] = X[1]; z[1] < TWO23;) + for (a = 1, z[1] = X[1]; z[1] < TWO23;) { - a *= TWO; - z[1] *= TWO; + a *= 2; + z[1] *= 2; } for (i = 2; i < 5; i++) @@ -160,21 +160,21 @@ norm (const mp_no *x, double *y, int p) if (v == TWO18) { - if (z[4] == ZERO) + if (z[4] == 0) { for (i = 5; i <= p; i++) { - if (X[i] == ZERO) + if (X[i] == 0) continue; else { - z[3] += ONE; + z[3] += 1; break; } } } else - z[3] += ONE; + z[3] += 1; } c = (z[1] + R * (z[2] + R * z[3])) / a; @@ -204,7 +204,7 @@ denorm (const mp_no *x, double *y, int p) #define R RADIXI if (EX < -44 || (EX == -44 && X[1] < TWO5)) { - *y = ZERO; + *y = 0; return; } @@ -213,21 +213,21 @@ denorm (const mp_no *x, double *y, int p) if (EX == -42) { z[1] = X[1] + TWO10; - z[2] = ZERO; - z[3] = ZERO; + z[2] = 0; + z[3] = 0; k = 3; } else if (EX == -43) { z[1] = TWO10; z[2] = X[1]; - z[3] = ZERO; + z[3] = 0; k = 2; } else { z[1] = TWO10; - z[2] = ZERO; + z[2] = 0; z[3] = X[1]; k = 1; } @@ -238,7 +238,7 @@ denorm (const mp_no *x, double *y, int p) { z[1] = X[1] + TWO10; z[2] = X[2]; - z[3] = ZERO; + z[3] = 0; k = 3; } else if (EX == -43) @@ -251,7 +251,7 @@ denorm (const mp_no *x, double *y, int p) else { z[1] = TWO10; - z[2] = ZERO; + z[2] = 0; z[3] = X[1]; k = 1; } @@ -273,7 +273,7 @@ denorm (const mp_no *x, double *y, int p) else { z[1] = TWO10; - z[2] = ZERO; + z[2] = 0; k = 1; } z[3] = X[k]; @@ -285,11 +285,11 @@ denorm (const mp_no *x, double *y, int p) { for (i = k + 1; i <= p2; i++) { - if (X[i] == ZERO) + if (X[i] == 0) continue; else { - z[3] += ONE; + z[3] += 1; break; } } @@ -306,9 +306,9 @@ denorm (const mp_no *x, double *y, int p) void __mp_dbl (const mp_no *x, double *y, int p) { - if (X[0] == ZERO) + if (X[0] == 0) { - *y = ZERO; + *y = 0; return; } @@ -329,23 +329,23 @@ __dbl_mp (double x, mp_no *y, int p) long p2 = p; /* Sign. */ - if (x == ZERO) + if (x == 0) { - Y[0] = ZERO; + Y[0] = 0; return; } - else if (x > ZERO) - Y[0] = ONE; + else if (x > 0) + Y[0] = 1; else { - Y[0] = MONE; + Y[0] = -1; x = -x; } /* Exponent. */ - for (EY = ONE; x >= RADIX; EY += ONE) + for (EY = 1; x >= RADIX; EY += 1) x *= RADIXI; - for (; x < ONE; EY -= ONE) + for (; x < 1; EY -= 1) x *= RADIX; /* Digits. */ @@ -356,7 +356,7 @@ __dbl_mp (double x, mp_no *y, int p) x *= RADIX; } for (; i <= p2; i++) - Y[i] = ZERO; + Y[i] = 0; } /* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The @@ -383,7 +383,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) return; } - zk = ZERO; + zk = 0; for (; j > 0; i--, j--) { @@ -391,12 +391,12 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) if (zk >= RADIX) { Z[k--] = zk - RADIX; - zk = ONE; + zk = 1; } else { Z[k--] = zk; - zk = ZERO; + zk = 0; } } @@ -406,16 +406,16 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) if (zk >= RADIX) { Z[k--] = zk - RADIX; - zk = ONE; + zk = 1; } else { Z[k--] = zk; - zk = ZERO; + zk = 0; } } - if (zk == ZERO) + if (zk == 0) { for (i = 1; i <= p2; i++) Z[i] = Z[i + 1]; @@ -423,7 +423,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) else { Z[1] = zk; - EZ += ONE; + EZ += 1; } } @@ -453,27 +453,27 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) /* The relevant least significant digit in Y is non-zero, so we factor it in to enhance accuracy. */ - if (j < p2 && Y[j + 1] > ZERO) + if (j < p2 && Y[j + 1] > 0) { Z[k + 1] = RADIX - Y[j + 1]; - zk = MONE; + zk = -1; } else - zk = Z[k + 1] = ZERO; + zk = Z[k + 1] = 0; /* Subtract and borrow. */ for (; j > 0; i--, j--) { zk += (X[i] - Y[j]); - if (zk < ZERO) + if (zk < 0) { Z[k--] = zk + RADIX; - zk = MONE; + zk = -1; } else { Z[k--] = zk; - zk = ZERO; + zk = 0; } } @@ -481,25 +481,25 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p) for (; i > 0; i--) { zk += X[i]; - if (zk < ZERO) + if (zk < 0) { Z[k--] = zk + RADIX; - zk = MONE; + zk = -1; } else { Z[k--] = zk; - zk = ZERO; + zk = 0; } } /* Normalize. */ - for (i = 1; Z[i] == ZERO; i++); + for (i = 1; Z[i] == 0; i++); EZ = EZ - i + 1; for (k = 1; i <= p2 + 1;) Z[k++] = Z[i++]; for (; k <= p2;) - Z[k++] = ZERO; + Z[k++] = 0; } /* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X @@ -511,12 +511,12 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; - if (X[0] == ZERO) + if (X[0] == 0) { __cpy (y, z, p); return; } - else if (Y[0] == ZERO) + else if (Y[0] == 0) { __cpy (x, z, p); return; @@ -548,7 +548,7 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p) Z[0] = Y[0]; } else - Z[0] = ZERO; + Z[0] = 0; } } @@ -561,13 +561,13 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p) { int n; - if (X[0] == ZERO) + if (X[0] == 0) { __cpy (y, z, p); Z[0] = -Z[0]; return; } - else if (Y[0] == ZERO) + else if (Y[0] == 0) { __cpy (x, z, p); return; @@ -599,7 +599,7 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p) Z[0] = -Y[0]; } else - Z[0] = ZERO; + Z[0] = 0; } } @@ -618,23 +618,23 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p) mantissa_store_t *diag; /* Is z=0? */ - if (__glibc_unlikely (X[0] * Y[0] == ZERO)) + if (__glibc_unlikely (X[0] * Y[0] == 0)) { - Z[0] = ZERO; + Z[0] = 0; return; } /* We need not iterate through all X's and Y's since it's pointless to multiply zeroes. Here, both are zero... */ for (ip2 = p2; ip2 > 0; ip2--) - if (X[ip2] != ZERO || Y[ip2] != ZERO) + if (X[ip2] != 0 || Y[ip2] != 0) break; - a = X[ip2] != ZERO ? y : x; + a = X[ip2] != 0 ? y : x; /* ... and here, at least one of them is still zero. */ for (ip = ip2; ip > 0; ip--) - if (a->d[ip] != ZERO) + if (a->d[ip] != 0) break; /* The product looks like this for p = 3 (as an example): @@ -661,19 +661,19 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p) Another thing that becomes evident is that only the most significant ip+ip2 digits of the result are non-zero, where ip and ip2 are the 'internal precision' of the input numbers, i.e. digits after ip and ip2 - are all ZERO. */ + are all 0. */ k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3; while (k > ip + ip2 + 1) - Z[k--] = ZERO; + Z[k--] = 0; - zk = ZERO; + zk = 0; /* Precompute sums of diagonal elements so that we can directly use them later. See the next comment to know we why need them. */ diag = alloca (k * sizeof (mantissa_store_t)); - mantissa_store_t d = ZERO; + mantissa_store_t d = 0; for (i = 1; i <= ip; i++) { d += X[i] * (mantissa_store_t) Y[i]; @@ -738,7 +738,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p) int e = EX + EY; /* Is there a carry beyond the most significant digit? */ - if (__glibc_unlikely (Z[1] == ZERO)) + if (__glibc_unlikely (Z[1] == 0)) { for (i = 1; i <= p2; i++) Z[i] = Z[i + 1]; @@ -763,24 +763,24 @@ __sqr (const mp_no *x, mp_no *y, int p) mantissa_store_t yk; /* Is z=0? */ - if (__glibc_unlikely (X[0] == ZERO)) + if (__glibc_unlikely (X[0] == 0)) { - Y[0] = ZERO; + Y[0] = 0; return; } /* We need not iterate through all X's since it's pointless to multiply zeroes. */ for (ip = p; ip > 0; ip--) - if (X[ip] != ZERO) + if (X[ip] != 0) break; k = (__glibc_unlikely (p < 3)) ? p + p : p + 3; while (k > 2 * ip + 1) - Y[k--] = ZERO; + Y[k--] = 0; - yk = ZERO; + yk = 0; while (k > p) { @@ -802,7 +802,7 @@ __sqr (const mp_no *x, mp_no *y, int p) for (i = k - p, j = p; i < j; i++, j--) yk2 += X[i] * (mantissa_store_t) X[j]; - yk += 2.0 * yk2; + yk += 2 * yk2; DIV_RADIX (yk, Y[k]); k--; @@ -820,7 +820,7 @@ __sqr (const mp_no *x, mp_no *y, int p) for (i = 1, j = k - 1; i < j; i++, j--) yk2 += X[i] * (mantissa_store_t) X[j]; - yk += 2.0 * yk2; + yk += 2 * yk2; DIV_RADIX (yk, Y[k]); k--; @@ -828,7 +828,7 @@ __sqr (const mp_no *x, mp_no *y, int p) Y[k] = yk; /* Squares are always positive. */ - Y[0] = 1.0; + Y[0] = 1; /* Get the exponent sum into an intermediate variable. This is a subtle optimization, where given enough registers, all operations on the exponent @@ -836,7 +836,7 @@ __sqr (const mp_no *x, mp_no *y, int p) int e = EX * 2; /* Is there a carry beyond the most significant digit? */ - if (__glibc_unlikely (Y[1] == ZERO)) + if (__glibc_unlikely (Y[1] == 0)) { for (i = 1; i <= p; i++) Y[i] = Y[i + 1]; @@ -868,7 +868,7 @@ __inv (const mp_no *x, mp_no *y, int p) __cpy (x, &z, p); z.e = 0; __mp_dbl (&z, &t, p); - t = ONE / t; + t = 1 / t; __dbl_mp (t, y, p); EY -= EX; @@ -894,8 +894,8 @@ __dvd (const mp_no *x, const mp_no *y, mp_no *z, int p) { mp_no w; - if (X[0] == ZERO) - Z[0] = ZERO; + if (X[0] == 0) + Z[0] = 0; else { __inv (y, &w, p); |