aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c152
1 files changed, 76 insertions, 76 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
index c238ccf2af..a3feb175ed 100644
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ b/sysdeps/ieee754/dbl-64/mpa.c
@@ -80,14 +80,14 @@ __acr (const mp_no *x, const mp_no *y, int p)
{
long i;
- if (X[0] == ZERO)
+ if (X[0] == 0)
{
- if (Y[0] == ZERO)
+ if (Y[0] == 0)
i = 0;
else
i = -1;
}
- else if (Y[0] == ZERO)
+ else if (Y[0] == 0)
i = 1;
else
{
@@ -140,10 +140,10 @@ norm (const mp_no *x, double *y, int p)
}
else
{
- for (a = ONE, z[1] = X[1]; z[1] < TWO23;)
+ for (a = 1, z[1] = X[1]; z[1] < TWO23;)
{
- a *= TWO;
- z[1] *= TWO;
+ a *= 2;
+ z[1] *= 2;
}
for (i = 2; i < 5; i++)
@@ -160,21 +160,21 @@ norm (const mp_no *x, double *y, int p)
if (v == TWO18)
{
- if (z[4] == ZERO)
+ if (z[4] == 0)
{
for (i = 5; i <= p; i++)
{
- if (X[i] == ZERO)
+ if (X[i] == 0)
continue;
else
{
- z[3] += ONE;
+ z[3] += 1;
break;
}
}
}
else
- z[3] += ONE;
+ z[3] += 1;
}
c = (z[1] + R * (z[2] + R * z[3])) / a;
@@ -204,7 +204,7 @@ denorm (const mp_no *x, double *y, int p)
#define R RADIXI
if (EX < -44 || (EX == -44 && X[1] < TWO5))
{
- *y = ZERO;
+ *y = 0;
return;
}
@@ -213,21 +213,21 @@ denorm (const mp_no *x, double *y, int p)
if (EX == -42)
{
z[1] = X[1] + TWO10;
- z[2] = ZERO;
- z[3] = ZERO;
+ z[2] = 0;
+ z[3] = 0;
k = 3;
}
else if (EX == -43)
{
z[1] = TWO10;
z[2] = X[1];
- z[3] = ZERO;
+ z[3] = 0;
k = 2;
}
else
{
z[1] = TWO10;
- z[2] = ZERO;
+ z[2] = 0;
z[3] = X[1];
k = 1;
}
@@ -238,7 +238,7 @@ denorm (const mp_no *x, double *y, int p)
{
z[1] = X[1] + TWO10;
z[2] = X[2];
- z[3] = ZERO;
+ z[3] = 0;
k = 3;
}
else if (EX == -43)
@@ -251,7 +251,7 @@ denorm (const mp_no *x, double *y, int p)
else
{
z[1] = TWO10;
- z[2] = ZERO;
+ z[2] = 0;
z[3] = X[1];
k = 1;
}
@@ -273,7 +273,7 @@ denorm (const mp_no *x, double *y, int p)
else
{
z[1] = TWO10;
- z[2] = ZERO;
+ z[2] = 0;
k = 1;
}
z[3] = X[k];
@@ -285,11 +285,11 @@ denorm (const mp_no *x, double *y, int p)
{
for (i = k + 1; i <= p2; i++)
{
- if (X[i] == ZERO)
+ if (X[i] == 0)
continue;
else
{
- z[3] += ONE;
+ z[3] += 1;
break;
}
}
@@ -306,9 +306,9 @@ denorm (const mp_no *x, double *y, int p)
void
__mp_dbl (const mp_no *x, double *y, int p)
{
- if (X[0] == ZERO)
+ if (X[0] == 0)
{
- *y = ZERO;
+ *y = 0;
return;
}
@@ -329,23 +329,23 @@ __dbl_mp (double x, mp_no *y, int p)
long p2 = p;
/* Sign. */
- if (x == ZERO)
+ if (x == 0)
{
- Y[0] = ZERO;
+ Y[0] = 0;
return;
}
- else if (x > ZERO)
- Y[0] = ONE;
+ else if (x > 0)
+ Y[0] = 1;
else
{
- Y[0] = MONE;
+ Y[0] = -1;
x = -x;
}
/* Exponent. */
- for (EY = ONE; x >= RADIX; EY += ONE)
+ for (EY = 1; x >= RADIX; EY += 1)
x *= RADIXI;
- for (; x < ONE; EY -= ONE)
+ for (; x < 1; EY -= 1)
x *= RADIX;
/* Digits. */
@@ -356,7 +356,7 @@ __dbl_mp (double x, mp_no *y, int p)
x *= RADIX;
}
for (; i <= p2; i++)
- Y[i] = ZERO;
+ Y[i] = 0;
}
/* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The
@@ -383,7 +383,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
return;
}
- zk = ZERO;
+ zk = 0;
for (; j > 0; i--, j--)
{
@@ -391,12 +391,12 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
if (zk >= RADIX)
{
Z[k--] = zk - RADIX;
- zk = ONE;
+ zk = 1;
}
else
{
Z[k--] = zk;
- zk = ZERO;
+ zk = 0;
}
}
@@ -406,16 +406,16 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
if (zk >= RADIX)
{
Z[k--] = zk - RADIX;
- zk = ONE;
+ zk = 1;
}
else
{
Z[k--] = zk;
- zk = ZERO;
+ zk = 0;
}
}
- if (zk == ZERO)
+ if (zk == 0)
{
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
@@ -423,7 +423,7 @@ add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
else
{
Z[1] = zk;
- EZ += ONE;
+ EZ += 1;
}
}
@@ -453,27 +453,27 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
/* The relevant least significant digit in Y is non-zero, so we factor it in
to enhance accuracy. */
- if (j < p2 && Y[j + 1] > ZERO)
+ if (j < p2 && Y[j + 1] > 0)
{
Z[k + 1] = RADIX - Y[j + 1];
- zk = MONE;
+ zk = -1;
}
else
- zk = Z[k + 1] = ZERO;
+ zk = Z[k + 1] = 0;
/* Subtract and borrow. */
for (; j > 0; i--, j--)
{
zk += (X[i] - Y[j]);
- if (zk < ZERO)
+ if (zk < 0)
{
Z[k--] = zk + RADIX;
- zk = MONE;
+ zk = -1;
}
else
{
Z[k--] = zk;
- zk = ZERO;
+ zk = 0;
}
}
@@ -481,25 +481,25 @@ sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
for (; i > 0; i--)
{
zk += X[i];
- if (zk < ZERO)
+ if (zk < 0)
{
Z[k--] = zk + RADIX;
- zk = MONE;
+ zk = -1;
}
else
{
Z[k--] = zk;
- zk = ZERO;
+ zk = 0;
}
}
/* Normalize. */
- for (i = 1; Z[i] == ZERO; i++);
+ for (i = 1; Z[i] == 0; i++);
EZ = EZ - i + 1;
for (k = 1; i <= p2 + 1;)
Z[k++] = Z[i++];
for (; k <= p2;)
- Z[k++] = ZERO;
+ Z[k++] = 0;
}
/* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X
@@ -511,12 +511,12 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int n;
- if (X[0] == ZERO)
+ if (X[0] == 0)
{
__cpy (y, z, p);
return;
}
- else if (Y[0] == ZERO)
+ else if (Y[0] == 0)
{
__cpy (x, z, p);
return;
@@ -548,7 +548,7 @@ __add (const mp_no *x, const mp_no *y, mp_no *z, int p)
Z[0] = Y[0];
}
else
- Z[0] = ZERO;
+ Z[0] = 0;
}
}
@@ -561,13 +561,13 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
int n;
- if (X[0] == ZERO)
+ if (X[0] == 0)
{
__cpy (y, z, p);
Z[0] = -Z[0];
return;
}
- else if (Y[0] == ZERO)
+ else if (Y[0] == 0)
{
__cpy (x, z, p);
return;
@@ -599,7 +599,7 @@ __sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
Z[0] = -Y[0];
}
else
- Z[0] = ZERO;
+ Z[0] = 0;
}
}
@@ -618,23 +618,23 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
mantissa_store_t *diag;
/* Is z=0? */
- if (__glibc_unlikely (X[0] * Y[0] == ZERO))
+ if (__glibc_unlikely (X[0] * Y[0] == 0))
{
- Z[0] = ZERO;
+ Z[0] = 0;
return;
}
/* We need not iterate through all X's and Y's since it's pointless to
multiply zeroes. Here, both are zero... */
for (ip2 = p2; ip2 > 0; ip2--)
- if (X[ip2] != ZERO || Y[ip2] != ZERO)
+ if (X[ip2] != 0 || Y[ip2] != 0)
break;
- a = X[ip2] != ZERO ? y : x;
+ a = X[ip2] != 0 ? y : x;
/* ... and here, at least one of them is still zero. */
for (ip = ip2; ip > 0; ip--)
- if (a->d[ip] != ZERO)
+ if (a->d[ip] != 0)
break;
/* The product looks like this for p = 3 (as an example):
@@ -661,19 +661,19 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
Another thing that becomes evident is that only the most significant
ip+ip2 digits of the result are non-zero, where ip and ip2 are the
'internal precision' of the input numbers, i.e. digits after ip and ip2
- are all ZERO. */
+ are all 0. */
k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
while (k > ip + ip2 + 1)
- Z[k--] = ZERO;
+ Z[k--] = 0;
- zk = ZERO;
+ zk = 0;
/* Precompute sums of diagonal elements so that we can directly use them
later. See the next comment to know we why need them. */
diag = alloca (k * sizeof (mantissa_store_t));
- mantissa_store_t d = ZERO;
+ mantissa_store_t d = 0;
for (i = 1; i <= ip; i++)
{
d += X[i] * (mantissa_store_t) Y[i];
@@ -738,7 +738,7 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
int e = EX + EY;
/* Is there a carry beyond the most significant digit? */
- if (__glibc_unlikely (Z[1] == ZERO))
+ if (__glibc_unlikely (Z[1] == 0))
{
for (i = 1; i <= p2; i++)
Z[i] = Z[i + 1];
@@ -763,24 +763,24 @@ __sqr (const mp_no *x, mp_no *y, int p)
mantissa_store_t yk;
/* Is z=0? */
- if (__glibc_unlikely (X[0] == ZERO))
+ if (__glibc_unlikely (X[0] == 0))
{
- Y[0] = ZERO;
+ Y[0] = 0;
return;
}
/* We need not iterate through all X's since it's pointless to
multiply zeroes. */
for (ip = p; ip > 0; ip--)
- if (X[ip] != ZERO)
+ if (X[ip] != 0)
break;
k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
while (k > 2 * ip + 1)
- Y[k--] = ZERO;
+ Y[k--] = 0;
- yk = ZERO;
+ yk = 0;
while (k > p)
{
@@ -802,7 +802,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
for (i = k - p, j = p; i < j; i++, j--)
yk2 += X[i] * (mantissa_store_t) X[j];
- yk += 2.0 * yk2;
+ yk += 2 * yk2;
DIV_RADIX (yk, Y[k]);
k--;
@@ -820,7 +820,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
for (i = 1, j = k - 1; i < j; i++, j--)
yk2 += X[i] * (mantissa_store_t) X[j];
- yk += 2.0 * yk2;
+ yk += 2 * yk2;
DIV_RADIX (yk, Y[k]);
k--;
@@ -828,7 +828,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
Y[k] = yk;
/* Squares are always positive. */
- Y[0] = 1.0;
+ Y[0] = 1;
/* Get the exponent sum into an intermediate variable. This is a subtle
optimization, where given enough registers, all operations on the exponent
@@ -836,7 +836,7 @@ __sqr (const mp_no *x, mp_no *y, int p)
int e = EX * 2;
/* Is there a carry beyond the most significant digit? */
- if (__glibc_unlikely (Y[1] == ZERO))
+ if (__glibc_unlikely (Y[1] == 0))
{
for (i = 1; i <= p; i++)
Y[i] = Y[i + 1];
@@ -868,7 +868,7 @@ __inv (const mp_no *x, mp_no *y, int p)
__cpy (x, &z, p);
z.e = 0;
__mp_dbl (&z, &t, p);
- t = ONE / t;
+ t = 1 / t;
__dbl_mp (t, y, p);
EY -= EX;
@@ -894,8 +894,8 @@ __dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
{
mp_no w;
- if (X[0] == ZERO)
- Z[0] = ZERO;
+ if (X[0] == 0)
+ Z[0] = 0;
else
{
__inv (y, &w, p);