aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/s_sin.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/s_sin.c')
-rw-r--r--sysdeps/ieee754/dbl-64/s_sin.c927
1 files changed, 0 insertions, 927 deletions
diff --git a/sysdeps/ieee754/dbl-64/s_sin.c b/sysdeps/ieee754/dbl-64/s_sin.c
deleted file mode 100644
index c258d39e49..0000000000
--- a/sysdeps/ieee754/dbl-64/s_sin.c
+++ /dev/null
@@ -1,927 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/****************************************************************************/
-/* */
-/* MODULE_NAME:usncs.c */
-/* */
-/* FUNCTIONS: usin */
-/* ucos */
-/* slow */
-/* slow1 */
-/* slow2 */
-/* sloww */
-/* sloww1 */
-/* sloww2 */
-/* bsloww */
-/* bsloww1 */
-/* bsloww2 */
-/* cslow2 */
-/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
-/* branred.c sincos32.c dosincos.c mpa.c */
-/* sincos.tbl */
-/* */
-/* An ultimate sin and routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
-/* Assumption: Machine arithmetic operations are performed in */
-/* round to nearest mode of IEEE 754 standard. */
-/* */
-/****************************************************************************/
-
-
-#include <errno.h>
-#include <float.h>
-#include "endian.h"
-#include "mydefs.h"
-#include "usncs.h"
-#include "MathLib.h"
-#include <math.h>
-#include <math_private.h>
-#include <fenv.h>
-
-/* Helper macros to compute sin of the input values. */
-#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))
-
-#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)
-
-/* The computed polynomial is a variation of the Taylor series expansion for
- sin(a):
-
- a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2
-
- The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
- on. The result is returned to LHS and correction in COR. */
-#define TAYLOR_SIN(xx, a, da, cor) \
-({ \
- double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \
- double res = (a) + t; \
- (cor) = ((a) - res) + t; \
- res; \
-})
-
-/* This is again a variation of the Taylor series expansion with the term
- x^3/3! expanded into the following for better accuracy:
-
- bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3
-
- The correction term is dx and bb + aa = -1/3!
- */
-#define TAYLOR_SLOW(x0, dx, cor) \
-({ \
- static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ \
- double xx = (x0) * (x0); \
- double x1 = ((x0) + th2_36) - th2_36; \
- double y = aa * x1 * x1 * x1; \
- double r = (x0) + y; \
- double x2 = ((x0) - x1) + (dx); \
- double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2) \
- * (x0) + aa * x2 * x2 * x2 + (dx)); \
- t = (((x0) - r) + y) + t; \
- double res = r + t; \
- (cor) = (r - res) + t; \
- res; \
-})
-
-#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
-({ \
- int4 k = u.i[LOW_HALF] << 2; \
- sn = __sincostab.x[k]; \
- ssn = __sincostab.x[k + 1]; \
- cs = __sincostab.x[k + 2]; \
- ccs = __sincostab.x[k + 3]; \
-})
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-extern const union
-{
- int4 i[880];
- double x[440];
-} __sincostab attribute_hidden;
-
-static const double
- sn3 = -1.66666666666664880952546298448555E-01,
- sn5 = 8.33333214285722277379541354343671E-03,
- cs2 = 4.99999999999999999999950396842453E-01,
- cs4 = -4.16666666666664434524222570944589E-02,
- cs6 = 1.38888874007937613028114285595617E-03;
-
-static const double t22 = 0x1.8p22;
-
-void __dubsin (double x, double dx, double w[]);
-void __docos (double x, double dx, double w[]);
-double __mpsin (double x, double dx, bool reduce_range);
-double __mpcos (double x, double dx, bool reduce_range);
-static double slow (double x);
-static double slow1 (double x);
-static double slow2 (double x);
-static double sloww (double x, double dx, double orig, bool shift_quadrant);
-static double sloww1 (double x, double dx, double orig, bool shift_quadrant);
-static double sloww2 (double x, double dx, double orig, int n);
-static double bsloww (double x, double dx, double orig, int n);
-static double bsloww1 (double x, double dx, double orig, int n);
-static double bsloww2 (double x, double dx, double orig, int n);
-int __branred (double x, double *a, double *aa);
-static double cslow2 (double x);
-
-/* Given a number partitioned into X and DX, this function computes the cosine
- of the number by combining the sin and cos of X (as computed by a variation
- of the Taylor series) with the values looked up from the sin/cos table to
- get the result in RES and a correction value in COR. */
-static inline double
-__always_inline
-do_cos (double x, double dx, double *corp)
-{
- mynumber u;
-
- if (x < 0)
- dx = -dx;
-
- u.x = big + fabs (x);
- x = fabs (x) - (u.x - big) + dx;
-
- double xx, s, sn, ssn, c, cs, ccs, res, cor;
- xx = x * x;
- s = x + x * xx * (sn3 + xx * sn5);
- c = xx * (cs2 + xx * (cs4 + xx * cs6));
- SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
- cor = (ccs - s * ssn - cs * c) - sn * s;
- res = cs + cor;
- cor = (cs - res) + cor;
- *corp = cor;
- return res;
-}
-
-/* A more precise variant of DO_COS. EPS is the adjustment to the correction
- COR. */
-static inline double
-__always_inline
-do_cos_slow (double x, double dx, double eps, double *corp)
-{
- mynumber u;
-
- if (x <= 0)
- dx = -dx;
-
- u.x = big + fabs (x);
- x = fabs (x) - (u.x - big);
-
- double xx, y, x1, x2, e1, e2, res, cor;
- double s, sn, ssn, c, cs, ccs;
- xx = x * x;
- s = x * xx * (sn3 + xx * sn5);
- c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
- SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
- x1 = (x + t22) - t22;
- x2 = (x - x1) + dx;
- e1 = (sn + t22) - t22;
- e2 = (sn - e1) + ssn;
- cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
- y = cs - e1 * x1;
- cor = cor + ((cs - y) - e1 * x1);
- res = y + cor;
- cor = (y - res) + cor;
- cor = 1.0005 * cor + __copysign (eps, cor);
- *corp = cor;
- return res;
-}
-
-/* Given a number partitioned into X and DX, this function computes the sine of
- the number by combining the sin and cos of X (as computed by a variation of
- the Taylor series) with the values looked up from the sin/cos table to get
- the result in RES and a correction value in COR. */
-static inline double
-__always_inline
-do_sin (double x, double dx, double *corp)
-{
- mynumber u;
-
- if (x <= 0)
- dx = -dx;
- u.x = big + fabs (x);
- x = fabs (x) - (u.x - big);
-
- double xx, s, sn, ssn, c, cs, ccs, cor, res;
- xx = x * x;
- s = x + (dx + x * xx * (sn3 + xx * sn5));
- c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
- SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
- cor = (ssn + s * ccs - sn * c) + cs * s;
- res = sn + cor;
- cor = (sn - res) + cor;
- *corp = cor;
- return res;
-}
-
-/* A more precise variant of DO_SIN. EPS is the adjustment to the correction
- COR. */
-static inline double
-__always_inline
-do_sin_slow (double x, double dx, double eps, double *corp)
-{
- mynumber u;
-
- if (x <= 0)
- dx = -dx;
- u.x = big + fabs (x);
- x = fabs (x) - (u.x - big);
-
- double xx, y, x1, x2, c1, c2, res, cor;
- double s, sn, ssn, c, cs, ccs;
- xx = x * x;
- s = x * xx * (sn3 + xx * sn5);
- c = xx * (cs2 + xx * (cs4 + xx * cs6));
- SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
- x1 = (x + t22) - t22;
- x2 = (x - x1) + dx;
- c1 = (cs + t22) - t22;
- c2 = (cs - c1) + ccs;
- cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
- y = sn + c1 * x1;
- cor = cor + ((sn - y) + c1 * x1);
- res = y + cor;
- cor = (y - res) + cor;
- cor = 1.0005 * cor + __copysign (eps, cor);
- *corp = cor;
- return res;
-}
-
-/* Reduce range of X and compute sin of a + da. When SHIFT_QUADRANT is true,
- the routine returns the cosine of a + da by rotating the quadrant once and
- computing the sine of the result. */
-static inline double
-__always_inline
-reduce_and_compute (double x, bool shift_quadrant)
-{
- double retval = 0, a, da;
- unsigned int n = __branred (x, &a, &da);
- int4 k = (n + shift_quadrant) % 4;
- switch (k)
- {
- case 2:
- a = -a;
- da = -da;
- /* Fall through. */
- case 0:
- if (a * a < 0.01588)
- retval = bsloww (a, da, x, n);
- else
- retval = bsloww1 (a, da, x, n);
- break;
-
- case 1:
- case 3:
- retval = bsloww2 (a, da, x, n);
- break;
- }
- return retval;
-}
-
-static inline int4
-__always_inline
-reduce_sincos_1 (double x, double *a, double *da)
-{
- mynumber v;
-
- double t = (x * hpinv + toint);
- double xn = t - toint;
- v.x = t;
- double y = (x - xn * mp1) - xn * mp2;
- int4 n = v.i[LOW_HALF] & 3;
- double db = xn * mp3;
- double b = y - db;
- db = (y - b) - db;
-
- *a = b;
- *da = db;
-
- return n;
-}
-
-/* Compute sin (A + DA). cos can be computed by passing SHIFT_QUADRANT as
- true, which results in shifting the quadrant N clockwise. */
-static double
-__always_inline
-do_sincos_1 (double a, double da, double x, int4 n, bool shift_quadrant)
-{
- double xx, retval, res, cor;
- double eps = fabs (x) * 1.2e-30;
-
- int k1 = (n + shift_quadrant) & 3;
- switch (k1)
- { /* quarter of unit circle */
- case 2:
- a = -a;
- da = -da;
- /* Fall through. */
- case 0:
- xx = a * a;
- if (xx < 0.01588)
- {
- /* Taylor series. */
- res = TAYLOR_SIN (xx, a, da, cor);
- cor = 1.02 * cor + __copysign (eps, cor);
- retval = (res == res + cor) ? res : sloww (a, da, x, shift_quadrant);
- }
- else
- {
- res = do_sin (a, da, &cor);
- cor = 1.035 * cor + __copysign (eps, cor);
- retval = ((res == res + cor) ? __copysign (res, a)
- : sloww1 (a, da, x, shift_quadrant));
- }
- break;
-
- case 1:
- case 3:
- res = do_cos (a, da, &cor);
- cor = 1.025 * cor + __copysign (eps, cor);
- retval = ((res == res + cor) ? ((n & 2) ? -res : res)
- : sloww2 (a, da, x, n));
- break;
- }
-
- return retval;
-}
-
-static inline int4
-__always_inline
-reduce_sincos_2 (double x, double *a, double *da)
-{
- mynumber v;
-
- double t = (x * hpinv + toint);
- double xn = t - toint;
- v.x = t;
- double xn1 = (xn + 8.0e22) - 8.0e22;
- double xn2 = xn - xn1;
- double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
- int4 n = v.i[LOW_HALF] & 3;
- double db = xn1 * pp3;
- t = y - db;
- db = (y - t) - db;
- db = (db - xn2 * pp3) - xn * pp4;
- double b = t + db;
- db = (t - b) + db;
-
- *a = b;
- *da = db;
-
- return n;
-}
-
-/* Compute sin (A + DA). cos can be computed by passing SHIFT_QUADRANT as
- true, which results in shifting the quadrant N clockwise. */
-static double
-__always_inline
-do_sincos_2 (double a, double da, double x, int4 n, bool shift_quadrant)
-{
- double res, retval, cor, xx;
-
- double eps = 1.0e-24;
-
- int4 k = (n + shift_quadrant) & 3;
-
- switch (k)
- {
- case 2:
- a = -a;
- da = -da;
- /* Fall through. */
- case 0:
- xx = a * a;
- if (xx < 0.01588)
- {
- /* Taylor series. */
- res = TAYLOR_SIN (xx, a, da, cor);
- cor = 1.02 * cor + __copysign (eps, cor);
- retval = (res == res + cor) ? res : bsloww (a, da, x, n);
- }
- else
- {
- res = do_sin (a, da, &cor);
- cor = 1.035 * cor + __copysign (eps, cor);
- retval = ((res == res + cor) ? __copysign (res, a)
- : bsloww1 (a, da, x, n));
- }
- break;
-
- case 1:
- case 3:
- res = do_cos (a, da, &cor);
- cor = 1.025 * cor + __copysign (eps, cor);
- retval = ((res == res + cor) ? ((n & 2) ? -res : res)
- : bsloww2 (a, da, x, n));
- break;
- }
-
- return retval;
-}
-
-/*******************************************************************/
-/* An ultimate sin routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of sin(x) */
-/*******************************************************************/
-#ifdef IN_SINCOS
-static double
-#else
-double
-SECTION
-#endif
-__sin (double x)
-{
- double xx, res, t, cor;
- mynumber u;
- int4 k, m;
- double retval = 0;
-
-#ifndef IN_SINCOS
- SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
-#endif
-
- u.x = x;
- m = u.i[HIGH_HALF];
- k = 0x7fffffff & m; /* no sign */
- if (k < 0x3e500000) /* if x->0 =>sin(x)=x */
- {
- math_check_force_underflow (x);
- retval = x;
- }
- /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
- else if (k < 0x3fd00000)
- {
- xx = x * x;
- /* Taylor series. */
- t = POLYNOMIAL (xx) * (xx * x);
- res = x + t;
- cor = (x - res) + t;
- retval = (res == res + 1.07 * cor) ? res : slow (x);
- } /* else if (k < 0x3fd00000) */
-/*---------------------------- 0.25<|x|< 0.855469---------------------- */
- else if (k < 0x3feb6000)
- {
- res = do_sin (x, 0, &cor);
- retval = (res == res + 1.096 * cor) ? res : slow1 (x);
- retval = __copysign (retval, x);
- } /* else if (k < 0x3feb6000) */
-
-/*----------------------- 0.855469 <|x|<2.426265 ----------------------*/
- else if (k < 0x400368fd)
- {
-
- t = hp0 - fabs (x);
- res = do_cos (t, hp1, &cor);
- retval = (res == res + 1.020 * cor) ? res : slow2 (x);
- retval = __copysign (retval, x);
- } /* else if (k < 0x400368fd) */
-
-#ifndef IN_SINCOS
-/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
- else if (k < 0x419921FB)
- {
- double a, da;
- int4 n = reduce_sincos_1 (x, &a, &da);
- retval = do_sincos_1 (a, da, x, n, false);
- } /* else if (k < 0x419921FB ) */
-
-/*---------------------105414350 <|x|< 281474976710656 --------------------*/
- else if (k < 0x42F00000)
- {
- double a, da;
-
- int4 n = reduce_sincos_2 (x, &a, &da);
- retval = do_sincos_2 (a, da, x, n, false);
- } /* else if (k < 0x42F00000 ) */
-
-/* -----------------281474976710656 <|x| <2^1024----------------------------*/
- else if (k < 0x7ff00000)
- retval = reduce_and_compute (x, false);
-
-/*--------------------- |x| > 2^1024 ----------------------------------*/
- else
- {
- if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
- __set_errno (EDOM);
- retval = x / x;
- }
-#endif
-
- return retval;
-}
-
-
-/*******************************************************************/
-/* An ultimate cos routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of cos(x) */
-/*******************************************************************/
-
-#ifdef IN_SINCOS
-static double
-#else
-double
-SECTION
-#endif
-__cos (double x)
-{
- double y, xx, res, cor, a, da;
- mynumber u;
- int4 k, m;
-
- double retval = 0;
-
-#ifndef IN_SINCOS
- SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
-#endif
-
- u.x = x;
- m = u.i[HIGH_HALF];
- k = 0x7fffffff & m;
-
- /* |x|<2^-27 => cos(x)=1 */
- if (k < 0x3e400000)
- retval = 1.0;
-
- else if (k < 0x3feb6000)
- { /* 2^-27 < |x| < 0.855469 */
- res = do_cos (x, 0, &cor);
- retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
- } /* else if (k < 0x3feb6000) */
-
- else if (k < 0x400368fd)
- { /* 0.855469 <|x|<2.426265 */ ;
- y = hp0 - fabs (x);
- a = y + hp1;
- da = (y - a) + hp1;
- xx = a * a;
- if (xx < 0.01588)
- {
- res = TAYLOR_SIN (xx, a, da, cor);
- cor = 1.02 * cor + __copysign (1.0e-31, cor);
- retval = (res == res + cor) ? res : sloww (a, da, x, true);
- }
- else
- {
- res = do_sin (a, da, &cor);
- cor = 1.035 * cor + __copysign (1.0e-31, cor);
- retval = ((res == res + cor) ? __copysign (res, a)
- : sloww1 (a, da, x, true));
- }
-
- } /* else if (k < 0x400368fd) */
-
-
-#ifndef IN_SINCOS
- else if (k < 0x419921FB)
- { /* 2.426265<|x|< 105414350 */
- double a, da;
- int4 n = reduce_sincos_1 (x, &a, &da);
- retval = do_sincos_1 (a, da, x, n, true);
- } /* else if (k < 0x419921FB ) */
-
- else if (k < 0x42F00000)
- {
- double a, da;
-
- int4 n = reduce_sincos_2 (x, &a, &da);
- retval = do_sincos_2 (a, da, x, n, true);
- } /* else if (k < 0x42F00000 ) */
-
- /* 281474976710656 <|x| <2^1024 */
- else if (k < 0x7ff00000)
- retval = reduce_and_compute (x, true);
-
- else
- {
- if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
- __set_errno (EDOM);
- retval = x / x; /* |x| > 2^1024 */
- }
-#endif
-
- return retval;
-}
-
-/************************************************************************/
-/* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */
-/* precision and if still doesn't accurate enough by mpsin or dubsin */
-/************************************************************************/
-
-static inline double
-__always_inline
-slow (double x)
-{
- double res, cor, w[2];
- res = TAYLOR_SLOW (x, 0, cor);
- if (res == res + 1.0007 * cor)
- return res;
-
- __dubsin (fabs (x), 0, w);
- if (w[0] == w[0] + 1.000000001 * w[1])
- return __copysign (w[0], x);
-
- return __copysign (__mpsin (fabs (x), 0, false), x);
-}
-
-/*******************************************************************************/
-/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
-/* and if result still doesn't accurate enough by mpsin or dubsin */
-/*******************************************************************************/
-
-static inline double
-__always_inline
-slow1 (double x)
-{
- double w[2], cor, res;
-
- res = do_sin_slow (x, 0, 0, &cor);
- if (res == res + cor)
- return res;
-
- __dubsin (fabs (x), 0, w);
- if (w[0] == w[0] + 1.000000005 * w[1])
- return w[0];
-
- return __mpsin (fabs (x), 0, false);
-}
-
-/**************************************************************************/
-/* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */
-/* and if result still doesn't accurate enough by mpsin or dubsin */
-/**************************************************************************/
-static inline double
-__always_inline
-slow2 (double x)
-{
- double w[2], y, y1, y2, cor, res;
-
- double t = hp0 - fabs (x);
- res = do_cos_slow (t, hp1, 0, &cor);
- if (res == res + cor)
- return res;
-
- y = fabs (x) - hp0;
- y1 = y - hp1;
- y2 = (y - y1) - hp1;
- __docos (y1, y2, w);
- if (w[0] == w[0] + 1.000000005 * w[1])
- return w[0];
-
- return __mpsin (fabs (x), 0, false);
-}
-
-/* Compute sin(x + dx) where X is small enough to use Taylor series around zero
- and (x + dx) in the first or third quarter of the unit circle. ORIG is the
- original value of X for computing error of the result. If the result is not
- accurate enough, the routine calls mpsin or dubsin. SHIFT_QUADRANT rotates
- the unit circle by 1 to compute the cosine instead of sine. */
-static inline double
-__always_inline
-sloww (double x, double dx, double orig, bool shift_quadrant)
-{
- double y, t, res, cor, w[2], a, da, xn;
- mynumber v;
- int4 n;
- res = TAYLOR_SLOW (x, dx, cor);
-
- double eps = fabs (orig) * 3.1e-30;
-
- cor = 1.0005 * cor + __copysign (eps, cor);
-
- if (res == res + cor)
- return res;
-
- a = fabs (x);
- da = (x > 0) ? dx : -dx;
- __dubsin (a, da, w);
- eps = fabs (orig) * 1.1e-30;
- cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
-
- if (w[0] == w[0] + cor)
- return __copysign (w[0], x);
-
- t = (orig * hpinv + toint);
- xn = t - toint;
- v.x = t;
- y = (orig - xn * mp1) - xn * mp2;
- n = (v.i[LOW_HALF] + shift_quadrant) & 3;
- da = xn * pp3;
- t = y - da;
- da = (y - t) - da;
- y = xn * pp4;
- a = t - y;
- da = ((t - a) - y) + da;
-
- if (n & 2)
- {
- a = -a;
- da = -da;
- }
- x = fabs (a);
- dx = (a > 0) ? da : -da;
- __dubsin (x, dx, w);
- eps = fabs (orig) * 1.1e-40;
- cor = 1.000000001 * w[1] + __copysign (eps, w[1]);
-
- if (w[0] == w[0] + cor)
- return __copysign (w[0], a);
-
- return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/* Compute sin(x + dx) where X is in the first or third quarter of the unit
- circle. ORIG is the original value of X for computing error of the result.
- If the result is not accurate enough, the routine calls mpsin or dubsin.
- SHIFT_QUADRANT rotates the unit circle by 1 to compute the cosine instead of
- sine. */
-static inline double
-__always_inline
-sloww1 (double x, double dx, double orig, bool shift_quadrant)
-{
- double w[2], cor, res;
-
- res = do_sin_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
-
- if (res == res + cor)
- return __copysign (res, x);
-
- dx = (x > 0 ? dx : -dx);
- __dubsin (fabs (x), dx, w);
-
- double eps = 1.1e-30 * fabs (orig);
- cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
-
- if (w[0] == w[0] + cor)
- return __copysign (w[0], x);
-
- return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/***************************************************************************/
-/* Routine compute sin(x+dx) (Double-Length number) where x in second or */
-/* fourth quarter of unit circle.Routine receive also the original value */
-/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
-/* accurate enough routine calls mpsin1 or dubsin */
-/***************************************************************************/
-
-static inline double
-__always_inline
-sloww2 (double x, double dx, double orig, int n)
-{
- double w[2], cor, res;
-
- res = do_cos_slow (x, dx, 3.1e-30 * fabs (orig), &cor);
-
- if (res == res + cor)
- return (n & 2) ? -res : res;
-
- dx = x > 0 ? dx : -dx;
- __docos (fabs (x), dx, w);
-
- double eps = 1.1e-30 * fabs (orig);
- cor = 1.000000005 * w[1] + __copysign (eps, w[1]);
-
- if (w[0] == w[0] + cor)
- return (n & 2) ? -w[0] : w[0];
-
- return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
-}
-
-/***************************************************************************/
-/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
-/* is small enough to use Taylor series around zero and (x+dx) */
-/* in first or third quarter of unit circle.Routine receive also */
-/* (right argument) the original value of x for computing error of */
-/* result.And if result not accurate enough routine calls other routines */
-/***************************************************************************/
-
-static inline double
-__always_inline
-bsloww (double x, double dx, double orig, int n)
-{
- double res, cor, w[2], a, da;
-
- res = TAYLOR_SLOW (x, dx, cor);
- cor = 1.0005 * cor + __copysign (1.1e-24, cor);
- if (res == res + cor)
- return res;
-
- a = fabs (x);
- da = (x > 0) ? dx : -dx;
- __dubsin (a, da, w);
- cor = 1.000000001 * w[1] + __copysign (1.1e-24, w[1]);
-
- if (w[0] == w[0] + cor)
- return __copysign (w[0], x);
-
- return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/***************************************************************************/
-/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
-/* in first or third quarter of unit circle.Routine receive also */
-/* (right argument) the original value of x for computing error of result.*/
-/* And if result not accurate enough routine calls other routines */
-/***************************************************************************/
-
-static inline double
-__always_inline
-bsloww1 (double x, double dx, double orig, int n)
-{
- double w[2], cor, res;
-
- res = do_sin_slow (x, dx, 1.1e-24, &cor);
- if (res == res + cor)
- return (x > 0) ? res : -res;
-
- dx = (x > 0) ? dx : -dx;
- __dubsin (fabs (x), dx, w);
-
- cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
-
- if (w[0] == w[0] + cor)
- return __copysign (w[0], x);
-
- return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
-}
-
-/***************************************************************************/
-/* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
-/* in second or fourth quarter of unit circle.Routine receive also the */
-/* original value and quarter(n= 1or 3)of x for computing error of result. */
-/* And if result not accurate enough routine calls other routines */
-/***************************************************************************/
-
-static inline double
-__always_inline
-bsloww2 (double x, double dx, double orig, int n)
-{
- double w[2], cor, res;
-
- res = do_cos_slow (x, dx, 1.1e-24, &cor);
- if (res == res + cor)
- return (n & 2) ? -res : res;
-
- dx = (x > 0) ? dx : -dx;
- __docos (fabs (x), dx, w);
-
- cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);
-
- if (w[0] == w[0] + cor)
- return (n & 2) ? -w[0] : w[0];
-
- return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
-}
-
-/************************************************************************/
-/* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */
-/* precision and if still doesn't accurate enough by mpcos or docos */
-/************************************************************************/
-
-static inline double
-__always_inline
-cslow2 (double x)
-{
- double w[2], cor, res;
-
- res = do_cos_slow (x, 0, 0, &cor);
- if (res == res + cor)
- return res;
-
- __docos (fabs (x), 0, w);
- if (w[0] == w[0] + 1.000000005 * w[1])
- return w[0];
-
- return __mpcos (x, 0, false);
-}
-
-#ifndef __cos
-weak_alias (__cos, cos)
-# ifdef NO_LONG_DOUBLE
-strong_alias (__cos, __cosl)
-weak_alias (__cos, cosl)
-# endif
-#endif
-#ifndef __sin
-weak_alias (__sin, sin)
-# ifdef NO_LONG_DOUBLE
-strong_alias (__sin, __sinl)
-weak_alias (__sin, sinl)
-# endif
-#endif