aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/mpa.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/mpa.c')
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c913
1 files changed, 0 insertions, 913 deletions
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
deleted file mode 100644
index eb5d8e8e89..0000000000
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ /dev/null
@@ -1,913 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2021 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <https://www.gnu.org/licenses/>.
- */
-/************************************************************************/
-/* MODULE_NAME: mpa.c */
-/* */
-/* FUNCTIONS: */
-/* mcr */
-/* acr */
-/* cpy */
-/* norm */
-/* denorm */
-/* mp_dbl */
-/* dbl_mp */
-/* add_magnitudes */
-/* sub_magnitudes */
-/* add */
-/* sub */
-/* mul */
-/* inv */
-/* dvd */
-/* */
-/* Arithmetic functions for multiple precision numbers. */
-/* Relative errors are bounded */
-/************************************************************************/
-
-
-#include "endian.h"
-#include "mpa.h"
-#include <sys/param.h>
-#include <alloca.h>
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-#ifndef NO__CONST
-const mp_no __mpone = { 1, { 1.0, 1.0 } };
-const mp_no __mptwo = { 1, { 1.0, 2.0 } };
-#endif
-
-#ifndef NO___ACR
-/* Compare mantissa of two multiple precision numbers regardless of the sign
- and exponent of the numbers. */
-static int
-mcr (const mp_no *x, const mp_no *y, int p)
-{
- long i;
- long p2 = p;
- for (i = 1; i <= p2; i++)
- {
- if (X[i] == Y[i])
- continue;
- else if (X[i] > Y[i])
- return 1;
- else
- return -1;
- }
- return 0;
-}
-
-/* Compare the absolute values of two multiple precision numbers. */
-int
-__acr (const mp_no *x, const mp_no *y, int p)
-{
- long i;
-
- if (X[0] == 0)
- {
- if (Y[0] == 0)
- i = 0;
- else
- i = -1;
- }
- else if (Y[0] == 0)
- i = 1;
- else
- {
- if (EX > EY)
- i = 1;
- else if (EX < EY)
- i = -1;
- else
- i = mcr (x, y, p);
- }
-
- return i;
-}
-#endif
-
-#ifndef NO___CPY
-/* Copy multiple precision number X into Y. They could be the same
- number. */
-void
-__cpy (const mp_no *x, mp_no *y, int p)
-{
- long i;
-
- EY = EX;
- for (i = 0; i <= p; i++)
- Y[i] = X[i];
-}
-#endif
-
-#ifndef NO___MP_DBL
-/* Convert a multiple precision number *X into a double precision
- number *Y, normalized case (|x| >= 2**(-1022))). X has precision
- P, which is positive. */
-static void
-norm (const mp_no *x, double *y, int p)
-{
-# define R RADIXI
- long i;
- double c;
- mantissa_t a, u, v, z[5];
- if (p < 5)
- {
- if (p == 1)
- c = X[1];
- else if (p == 2)
- c = X[1] + R * X[2];
- else if (p == 3)
- c = X[1] + R * (X[2] + R * X[3]);
- else /* p == 4. */
- c = (X[1] + R * X[2]) + R * R * (X[3] + R * X[4]);
- }
- else
- {
- for (a = 1, z[1] = X[1]; z[1] < TWO23; )
- {
- a *= 2;
- z[1] *= 2;
- }
-
- for (i = 2; i < 5; i++)
- {
- mantissa_store_t d, r;
- d = X[i] * (mantissa_store_t) a;
- DIV_RADIX (d, r);
- z[i] = r;
- z[i - 1] += d;
- }
-
- u = ALIGN_DOWN_TO (z[3], TWO19);
- v = z[3] - u;
-
- if (v == TWO18)
- {
- if (z[4] == 0)
- {
- for (i = 5; i <= p; i++)
- {
- if (X[i] == 0)
- continue;
- else
- {
- z[3] += 1;
- break;
- }
- }
- }
- else
- z[3] += 1;
- }
-
- c = (z[1] + R * (z[2] + R * z[3])) / a;
- }
-
- c *= X[0];
-
- for (i = 1; i < EX; i++)
- c *= RADIX;
- for (i = 1; i > EX; i--)
- c *= RADIXI;
-
- *y = c;
-# undef R
-}
-
-/* Convert a multiple precision number *X into a double precision
- number *Y, Denormal case (|x| < 2**(-1022))). */
-static void
-denorm (const mp_no *x, double *y, int p)
-{
- long i, k;
- long p2 = p;
- double c;
- mantissa_t u, z[5];
-
-# define R RADIXI
- if (EX < -44 || (EX == -44 && X[1] < TWO5))
- {
- *y = 0;
- return;
- }
-
- if (p2 == 1)
- {
- if (EX == -42)
- {
- z[1] = X[1] + TWO10;
- z[2] = 0;
- z[3] = 0;
- k = 3;
- }
- else if (EX == -43)
- {
- z[1] = TWO10;
- z[2] = X[1];
- z[3] = 0;
- k = 2;
- }
- else
- {
- z[1] = TWO10;
- z[2] = 0;
- z[3] = X[1];
- k = 1;
- }
- }
- else if (p2 == 2)
- {
- if (EX == -42)
- {
- z[1] = X[1] + TWO10;
- z[2] = X[2];
- z[3] = 0;
- k = 3;
- }
- else if (EX == -43)
- {
- z[1] = TWO10;
- z[2] = X[1];
- z[3] = X[2];
- k = 2;
- }
- else
- {
- z[1] = TWO10;
- z[2] = 0;
- z[3] = X[1];
- k = 1;
- }
- }
- else
- {
- if (EX == -42)
- {
- z[1] = X[1] + TWO10;
- z[2] = X[2];
- k = 3;
- }
- else if (EX == -43)
- {
- z[1] = TWO10;
- z[2] = X[1];
- k = 2;
- }
- else
- {
- z[1] = TWO10;
- z[2] = 0;
- k = 1;
- }
- z[3] = X[k];
- }
-
- u = ALIGN_DOWN_TO (z[3], TWO5);
-
- if (u == z[3])
- {
- for (i = k + 1; i <= p2; i++)
- {
- if (X[i] == 0)
- continue;
- else
- {
- z[3] += 1;
- break;
- }
- }
- }
-
- c = X[0] * ((z[1] + R * (z[2] + R * z[3])) - TWO10);
-
- *y = c * TWOM1032;
-# undef R
-}
-
-/* Convert multiple precision number *X into double precision number *Y. The
- result is correctly rounded to the nearest/even. */
-void
-__mp_dbl (const mp_no *x, double *y, int p)
-{
- if (X[0] == 0)
- {
- *y = 0;
- return;
- }
-
- if (__glibc_likely (EX > -42 || (EX == -42 && X[1] >= TWO10)))
- norm (x, y, p);
- else
- denorm (x, y, p);
-}
-#endif
-
-/* Get the multiple precision equivalent of X into *Y. If the precision is too
- small, the result is truncated. */
-void
-SECTION
-__dbl_mp (double x, mp_no *y, int p)
-{
- long i, n;
- long p2 = p;
-
- /* Sign. */
- if (x == 0)
- {
- Y[0] = 0;
- return;
- }
- else if (x > 0)
- Y[0] = 1;
- else
- {
- Y[0] = -1;
- x = -x;
- }
-
- /* Exponent. */
- for (EY = 1; x >= RADIX; EY += 1)
- x *= RADIXI;
- for (; x < 1; EY -= 1)
- x *= RADIX;
-
- /* Digits. */
- n = MIN (p2, 4);
- for (i = 1; i <= n; i++)
- {
- INTEGER_OF (x, Y[i]);
- x *= RADIX;
- }
- for (; i <= p2; i++)
- Y[i] = 0;
-}
-
-/* Add magnitudes of *X and *Y assuming that abs (*X) >= abs (*Y) > 0. The
- sign of the sum *Z is not changed. X and Y may overlap but not X and Z or
- Y and Z. No guard digit is used. The result equals the exact sum,
- truncated. */
-static void
-SECTION
-add_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
- long i, j, k;
- long p2 = p;
- mantissa_t zk;
-
- EZ = EX;
-
- i = p2;
- j = p2 + EY - EX;
- k = p2 + 1;
-
- if (__glibc_unlikely (j < 1))
- {
- __cpy (x, z, p);
- return;
- }
-
- zk = 0;
-
- for (; j > 0; i--, j--)
- {
- zk += X[i] + Y[j];
- if (zk >= RADIX)
- {
- Z[k--] = zk - RADIX;
- zk = 1;
- }
- else
- {
- Z[k--] = zk;
- zk = 0;
- }
- }
-
- for (; i > 0; i--)
- {
- zk += X[i];
- if (zk >= RADIX)
- {
- Z[k--] = zk - RADIX;
- zk = 1;
- }
- else
- {
- Z[k--] = zk;
- zk = 0;
- }
- }
-
- if (zk == 0)
- {
- for (i = 1; i <= p2; i++)
- Z[i] = Z[i + 1];
- }
- else
- {
- Z[1] = zk;
- EZ += 1;
- }
-}
-
-/* Subtract the magnitudes of *X and *Y assuming that abs (*x) > abs (*y) > 0.
- The sign of the difference *Z is not changed. X and Y may overlap but not X
- and Z or Y and Z. One guard digit is used. The error is less than one
- ULP. */
-static void
-SECTION
-sub_magnitudes (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
- long i, j, k;
- long p2 = p;
- mantissa_t zk;
-
- EZ = EX;
- i = p2;
- j = p2 + EY - EX;
- k = p2;
-
- /* Y is too small compared to X, copy X over to the result. */
- if (__glibc_unlikely (j < 1))
- {
- __cpy (x, z, p);
- return;
- }
-
- /* The relevant least significant digit in Y is non-zero, so we factor it in
- to enhance accuracy. */
- if (j < p2 && Y[j + 1] > 0)
- {
- Z[k + 1] = RADIX - Y[j + 1];
- zk = -1;
- }
- else
- zk = Z[k + 1] = 0;
-
- /* Subtract and borrow. */
- for (; j > 0; i--, j--)
- {
- zk += (X[i] - Y[j]);
- if (zk < 0)
- {
- Z[k--] = zk + RADIX;
- zk = -1;
- }
- else
- {
- Z[k--] = zk;
- zk = 0;
- }
- }
-
- /* We're done with digits from Y, so it's just digits in X. */
- for (; i > 0; i--)
- {
- zk += X[i];
- if (zk < 0)
- {
- Z[k--] = zk + RADIX;
- zk = -1;
- }
- else
- {
- Z[k--] = zk;
- zk = 0;
- }
- }
-
- /* Normalize. */
- for (i = 1; Z[i] == 0; i++)
- ;
- EZ = EZ - i + 1;
- for (k = 1; i <= p2 + 1; )
- Z[k++] = Z[i++];
- for (; k <= p2; )
- Z[k++] = 0;
-}
-
-/* Add *X and *Y and store the result in *Z. X and Y may overlap, but not X
- and Z or Y and Z. One guard digit is used. The error is less than one
- ULP. */
-void
-SECTION
-__add (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
- int n;
-
- if (X[0] == 0)
- {
- __cpy (y, z, p);
- return;
- }
- else if (Y[0] == 0)
- {
- __cpy (x, z, p);
- return;
- }
-
- if (X[0] == Y[0])
- {
- if (__acr (x, y, p) > 0)
- {
- add_magnitudes (x, y, z, p);
- Z[0] = X[0];
- }
- else
- {
- add_magnitudes (y, x, z, p);
- Z[0] = Y[0];
- }
- }
- else
- {
- if ((n = __acr (x, y, p)) == 1)
- {
- sub_magnitudes (x, y, z, p);
- Z[0] = X[0];
- }
- else if (n == -1)
- {
- sub_magnitudes (y, x, z, p);
- Z[0] = Y[0];
- }
- else
- Z[0] = 0;
- }
-}
-
-/* Subtract *Y from *X and return the result in *Z. X and Y may overlap but
- not X and Z or Y and Z. One guard digit is used. The error is less than
- one ULP. */
-void
-SECTION
-__sub (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
- int n;
-
- if (X[0] == 0)
- {
- __cpy (y, z, p);
- Z[0] = -Z[0];
- return;
- }
- else if (Y[0] == 0)
- {
- __cpy (x, z, p);
- return;
- }
-
- if (X[0] != Y[0])
- {
- if (__acr (x, y, p) > 0)
- {
- add_magnitudes (x, y, z, p);
- Z[0] = X[0];
- }
- else
- {
- add_magnitudes (y, x, z, p);
- Z[0] = -Y[0];
- }
- }
- else
- {
- if ((n = __acr (x, y, p)) == 1)
- {
- sub_magnitudes (x, y, z, p);
- Z[0] = X[0];
- }
- else if (n == -1)
- {
- sub_magnitudes (y, x, z, p);
- Z[0] = -Y[0];
- }
- else
- Z[0] = 0;
- }
-}
-
-#ifndef NO__MUL
-/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X
- and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P
- digits. In case P > 3 the error is bounded by 1.001 ULP. */
-void
-SECTION
-__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
- long i, j, k, ip, ip2;
- long p2 = p;
- mantissa_store_t zk;
- const mp_no *a;
- mantissa_store_t *diag;
-
- /* Is z=0? */
- if (__glibc_unlikely (X[0] * Y[0] == 0))
- {
- Z[0] = 0;
- return;
- }
-
- /* We need not iterate through all X's and Y's since it's pointless to
- multiply zeroes. Here, both are zero... */
- for (ip2 = p2; ip2 > 0; ip2--)
- if (X[ip2] != 0 || Y[ip2] != 0)
- break;
-
- a = X[ip2] != 0 ? y : x;
-
- /* ... and here, at least one of them is still zero. */
- for (ip = ip2; ip > 0; ip--)
- if (a->d[ip] != 0)
- break;
-
- /* The product looks like this for p = 3 (as an example):
-
-
- a1 a2 a3
- x b1 b2 b3
- -----------------------------
- a1*b3 a2*b3 a3*b3
- a1*b2 a2*b2 a3*b2
- a1*b1 a2*b1 a3*b1
-
- So our K needs to ideally be P*2, but we're limiting ourselves to P + 3
- for P >= 3. We compute the above digits in two parts; the last P-1
- digits and then the first P digits. The last P-1 digits are a sum of
- products of the input digits from P to P-k where K is 0 for the least
- significant digit and increases as we go towards the left. The product
- term is of the form X[k]*X[P-k] as can be seen in the above example.
-
- The first P digits are also a sum of products with the same product term,
- except that the sum is from 1 to k. This is also evident from the above
- example.
-
- Another thing that becomes evident is that only the most significant
- ip+ip2 digits of the result are non-zero, where ip and ip2 are the
- 'internal precision' of the input numbers, i.e. digits after ip and ip2
- are all 0. */
-
- k = (__glibc_unlikely (p2 < 3)) ? p2 + p2 : p2 + 3;
-
- while (k > ip + ip2 + 1)
- Z[k--] = 0;
-
- zk = 0;
-
- /* Precompute sums of diagonal elements so that we can directly use them
- later. See the next comment to know we why need them. */
- diag = alloca (k * sizeof (mantissa_store_t));
- mantissa_store_t d = 0;
- for (i = 1; i <= ip; i++)
- {
- d += X[i] * (mantissa_store_t) Y[i];
- diag[i] = d;
- }
- while (i < k)
- diag[i++] = d;
-
- while (k > p2)
- {
- long lim = k / 2;
-
- if (k % 2 == 0)
- /* We want to add this only once, but since we subtract it in the sum
- of products above, we add twice. */
- zk += 2 * X[lim] * (mantissa_store_t) Y[lim];
-
- for (i = k - p2, j = p2; i < j; i++, j--)
- zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]);
-
- zk -= diag[k - 1];
-
- DIV_RADIX (zk, Z[k]);
- k--;
- }
-
- /* The real deal. Mantissa digit Z[k] is the sum of all X[i] * Y[j] where i
- goes from 1 -> k - 1 and j goes the same range in reverse. To reduce the
- number of multiplications, we halve the range and if k is an even number,
- add the diagonal element X[k/2]Y[k/2]. Through the half range, we compute
- X[i] * Y[j] as (X[i] + X[j]) * (Y[i] + Y[j]) - X[i] * Y[i] - X[j] * Y[j].
-
- This reduction tells us that we're summing two things, the first term
- through the half range and the negative of the sum of the product of all
- terms of X and Y in the full range. i.e.
-
- SUM(X[i] * Y[i]) for k terms. This is precalculated above for each k in
- a single loop so that it completes in O(n) time and can hence be directly
- used in the loop below. */
- while (k > 1)
- {
- long lim = k / 2;
-
- if (k % 2 == 0)
- /* We want to add this only once, but since we subtract it in the sum
- of products above, we add twice. */
- zk += 2 * X[lim] * (mantissa_store_t) Y[lim];
-
- for (i = 1, j = k - 1; i < j; i++, j--)
- zk += (X[i] + X[j]) * (mantissa_store_t) (Y[i] + Y[j]);
-
- zk -= diag[k - 1];
-
- DIV_RADIX (zk, Z[k]);
- k--;
- }
- Z[k] = zk;
-
- /* Get the exponent sum into an intermediate variable. This is a subtle
- optimization, where given enough registers, all operations on the exponent
- happen in registers and the result is written out only once into EZ. */
- int e = EX + EY;
-
- /* Is there a carry beyond the most significant digit? */
- if (__glibc_unlikely (Z[1] == 0))
- {
- for (i = 1; i <= p2; i++)
- Z[i] = Z[i + 1];
- e--;
- }
-
- EZ = e;
- Z[0] = X[0] * Y[0];
-}
-#endif
-
-#ifndef NO__SQR
-/* Square *X and store result in *Y. X and Y may not overlap. For P in
- [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
- error is bounded by 1.001 ULP. This is a faster special case of
- multiplication. */
-void
-SECTION
-__sqr (const mp_no *x, mp_no *y, int p)
-{
- long i, j, k, ip;
- mantissa_store_t yk;
-
- /* Is z=0? */
- if (__glibc_unlikely (X[0] == 0))
- {
- Y[0] = 0;
- return;
- }
-
- /* We need not iterate through all X's since it's pointless to
- multiply zeroes. */
- for (ip = p; ip > 0; ip--)
- if (X[ip] != 0)
- break;
-
- k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
-
- while (k > 2 * ip + 1)
- Y[k--] = 0;
-
- yk = 0;
-
- while (k > p)
- {
- mantissa_store_t yk2 = 0;
- long lim = k / 2;
-
- if (k % 2 == 0)
- yk += X[lim] * (mantissa_store_t) X[lim];
-
- /* In __mul, this loop (and the one within the next while loop) run
- between a range to calculate the mantissa as follows:
-
- Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
- + X[n] * Y[k]
-
- For X == Y, we can get away with summing halfway and doubling the
- result. For cases where the range size is even, the mid-point needs
- to be added separately (above). */
- for (i = k - p, j = p; i < j; i++, j--)
- yk2 += X[i] * (mantissa_store_t) X[j];
-
- yk += 2 * yk2;
-
- DIV_RADIX (yk, Y[k]);
- k--;
- }
-
- while (k > 1)
- {
- mantissa_store_t yk2 = 0;
- long lim = k / 2;
-
- if (k % 2 == 0)
- yk += X[lim] * (mantissa_store_t) X[lim];
-
- /* Likewise for this loop. */
- for (i = 1, j = k - 1; i < j; i++, j--)
- yk2 += X[i] * (mantissa_store_t) X[j];
-
- yk += 2 * yk2;
-
- DIV_RADIX (yk, Y[k]);
- k--;
- }
- Y[k] = yk;
-
- /* Squares are always positive. */
- Y[0] = 1;
-
- /* Get the exponent sum into an intermediate variable. This is a subtle
- optimization, where given enough registers, all operations on the exponent
- happen in registers and the result is written out only once into EZ. */
- int e = EX * 2;
-
- /* Is there a carry beyond the most significant digit? */
- if (__glibc_unlikely (Y[1] == 0))
- {
- for (i = 1; i <= p; i++)
- Y[i] = Y[i + 1];
- e--;
- }
-
- EY = e;
-}
-#endif
-
-/* Invert *X and store in *Y. Relative error bound:
- - For P = 2: 1.001 * R ^ (1 - P)
- - For P = 3: 1.063 * R ^ (1 - P)
- - For P > 3: 2.001 * R ^ (1 - P)
-
- *X = 0 is not permissible. */
-static void
-SECTION
-__inv (const mp_no *x, mp_no *y, int p)
-{
- long i;
- double t;
- mp_no z, w;
- static const int np1[] =
- { 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
- };
-
- __cpy (x, &z, p);
- z.e = 0;
- __mp_dbl (&z, &t, p);
- t = 1 / t;
-
- /* t == 0 will never happen at this point, since 1/t can only be 0 if t is
- infinity, but before the division t == mantissa of x (exponent is 0). We
- can instruct the compiler to ignore this case. */
- if (t == 0)
- __builtin_unreachable ();
-
- __dbl_mp (t, y, p);
- EY -= EX;
-
- for (i = 0; i < np1[p]; i++)
- {
- __cpy (y, &w, p);
- __mul (x, &w, y, p);
- __sub (&__mptwo, y, &z, p);
- __mul (&w, &z, y, p);
- }
-}
-
-/* Divide *X by *Y and store result in *Z. X and Y may overlap but not X and Z
- or Y and Z. Relative error bound:
- - For P = 2: 2.001 * R ^ (1 - P)
- - For P = 3: 2.063 * R ^ (1 - P)
- - For P > 3: 3.001 * R ^ (1 - P)
-
- *X = 0 is not permissible. */
-void
-SECTION
-__dvd (const mp_no *x, const mp_no *y, mp_no *z, int p)
-{
- mp_no w;
-
- if (X[0] == 0)
- Z[0] = 0;
- else
- {
- __inv (y, &w, p);
- __mul (x, &w, z, p);
- }
-}