diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_sqrt.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_sqrt.c | 139 |
1 files changed, 0 insertions, 139 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_sqrt.c b/sysdeps/ieee754/dbl-64/e_sqrt.c deleted file mode 100644 index 017d30416c..0000000000 --- a/sysdeps/ieee754/dbl-64/e_sqrt.c +++ /dev/null @@ -1,139 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2017 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/*********************************************************************/ -/* MODULE_NAME: uroot.c */ -/* */ -/* FUNCTION: usqrt */ -/* */ -/* FILES NEEDED: dla.h endian.h mydefs.h */ -/* uroot.tbl */ -/* */ -/* An ultimate sqrt routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of square */ -/* root of x. */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/*********************************************************************/ - -#include "endian.h" -#include "mydefs.h" -#include <dla.h> -#include "MathLib.h" -#include "root.tbl" -#include <math_private.h> - -/*********************************************************************/ -/* An ultimate sqrt routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of square */ -/* root of x. */ -/*********************************************************************/ -double -__ieee754_sqrt (double x) -{ - static const double - rt0 = 9.99999999859990725855365213134618E-01, - rt1 = 4.99999999495955425917856814202739E-01, - rt2 = 3.75017500867345182581453026130850E-01, - rt3 = 3.12523626554518656309172508769531E-01; - static const double big = 134217728.0; - double y, t, del, res, res1, hy, z, zz, p, hx, tx, ty, s; - mynumber a, c = { { 0, 0 } }; - int4 k; - - a.x = x; - k = a.i[HIGH_HALF]; - a.i[HIGH_HALF] = (k & 0x001fffff) | 0x3fe00000; - t = inroot[(k & 0x001fffff) >> 14]; - s = a.x; - /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/ - if (k > 0x000fffff && k < 0x7ff00000) - { - int rm = __fegetround (); - fenv_t env; - libc_feholdexcept_setround (&env, FE_TONEAREST); - double ret; - y = 1.0 - t * (t * s); - t = t * (rt0 + y * (rt1 + y * (rt2 + y * rt3))); - c.i[HIGH_HALF] = 0x20000000 + ((k & 0x7fe00000) >> 1); - y = t * s; - hy = (y + big) - big; - del = 0.5 * t * ((s - hy * hy) - (y - hy) * (y + hy)); - res = y + del; - if (res == (res + 1.002 * ((y - res) + del))) - ret = res * c.x; - else - { - res1 = res + 1.5 * ((y - res) + del); - EMULV (res, res1, z, zz, p, hx, tx, hy, ty); /* (z+zz)=res*res1 */ - res = ((((z - s) + zz) < 0) ? max (res, res1) : - min (res, res1)); - ret = res * c.x; - } - math_force_eval (ret); - libc_fesetenv (&env); - double dret = x / ret; - if (dret != ret) - { - double force_inexact = 1.0 / 3.0; - math_force_eval (force_inexact); - /* The square root is inexact, ret is the round-to-nearest - value which may need adjusting for other rounding - modes. */ - switch (rm) - { -#ifdef FE_UPWARD - case FE_UPWARD: - if (dret > ret) - ret = (res + 0x1p-1022) * c.x; - break; -#endif - -#ifdef FE_DOWNWARD - case FE_DOWNWARD: -#endif -#ifdef FE_TOWARDZERO - case FE_TOWARDZERO: -#endif -#if defined FE_DOWNWARD || defined FE_TOWARDZERO - if (dret < ret) - ret = (res - 0x1p-1022) * c.x; - break; -#endif - - default: - break; - } - } - /* Otherwise (x / ret == ret), either the square root was exact or - the division was inexact. */ - return ret; - } - else - { - if ((k & 0x7ff00000) == 0x7ff00000) - return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ - if (x == 0) - return x; /* sqrt(+0)=+0, sqrt(-0)=-0 */ - if (k < 0) - return (x - x) / (x - x); /* sqrt(-ve)=sNaN */ - return 0x1p-256 * __ieee754_sqrt (x * 0x1p512); - } -} -strong_alias (__ieee754_sqrt, __sqrt_finite) |