diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_pow.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_pow.c | 481 |
1 files changed, 0 insertions, 481 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c deleted file mode 100644 index 9f6439ee42..0000000000 --- a/sysdeps/ieee754/dbl-64/e_pow.c +++ /dev/null @@ -1,481 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2017 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/***************************************************************************/ -/* MODULE_NAME: upow.c */ -/* */ -/* FUNCTIONS: upow */ -/* power1 */ -/* my_log2 */ -/* log1 */ -/* checkint */ -/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */ -/* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */ -/* uexp.c upow.c */ -/* root.tbl uexp.tbl upow.tbl */ -/* An ultimate power routine. Given two IEEE double machine numbers y,x */ -/* it computes the correctly rounded (to nearest) value of x^y. */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/***************************************************************************/ -#include <math.h> -#include "endian.h" -#include "upow.h" -#include <dla.h> -#include "mydefs.h" -#include "MathLib.h" -#include "upow.tbl" -#include <math_private.h> -#include <fenv.h> - -#ifndef SECTION -# define SECTION -#endif - -static const double huge = 1.0e300, tiny = 1.0e-300; - -double __exp1 (double x, double xx, double error); -static double log1 (double x, double *delta, double *error); -static double my_log2 (double x, double *delta, double *error); -double __slowpow (double x, double y, double z); -static double power1 (double x, double y); -static int checkint (double x); - -/* An ultimate power routine. Given two IEEE double machine numbers y, x it - computes the correctly rounded (to nearest) value of X^y. */ -double -SECTION -__ieee754_pow (double x, double y) -{ - double z, a, aa, error, t, a1, a2, y1, y2; - mynumber u, v; - int k; - int4 qx, qy; - v.x = y; - u.x = x; - if (v.i[LOW_HALF] == 0) - { /* of y */ - qx = u.i[HIGH_HALF] & 0x7fffffff; - /* Is x a NaN? */ - if ((((qx == 0x7ff00000) && (u.i[LOW_HALF] != 0)) || (qx > 0x7ff00000)) - && (y != 0 || issignaling (x))) - return x + x; - if (y == 1.0) - return x; - if (y == 2.0) - return x * x; - if (y == -1.0) - return 1.0 / x; - if (y == 0) - return 1.0; - } - /* else */ - if (((u.i[HIGH_HALF] > 0 && u.i[HIGH_HALF] < 0x7ff00000) || /* x>0 and not x->0 */ - (u.i[HIGH_HALF] == 0 && u.i[LOW_HALF] != 0)) && - /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ - (v.i[HIGH_HALF] & 0x7fffffff) < 0x4ff00000) - { /* if y<-1 or y>1 */ - double retval; - - { - SET_RESTORE_ROUND (FE_TONEAREST); - - /* Avoid internal underflow for tiny y. The exact value of y does - not matter if |y| <= 2**-64. */ - if (fabs (y) < 0x1p-64) - y = y < 0 ? -0x1p-64 : 0x1p-64; - z = log1 (x, &aa, &error); /* x^y =e^(y log (X)) */ - t = y * CN; - y1 = t - (t - y); - y2 = y - y1; - t = z * CN; - a1 = t - (t - z); - a2 = (z - a1) + aa; - a = y1 * a1; - aa = y2 * a1 + y * a2; - a1 = a + aa; - a2 = (a - a1) + aa; - error = error * fabs (y); - t = __exp1 (a1, a2, 1.9e16 * error); /* return -10 or 0 if wasn't computed exactly */ - retval = (t > 0) ? t : power1 (x, y); - } - - if (isinf (retval)) - retval = huge * huge; - else if (retval == 0) - retval = tiny * tiny; - else - math_check_force_underflow_nonneg (retval); - return retval; - } - - if (x == 0) - { - if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0) - || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) /* NaN */ - return y + y; - if (fabs (y) > 1.0e20) - return (y > 0) ? 0 : 1.0 / 0.0; - k = checkint (y); - if (k == -1) - return y < 0 ? 1.0 / x : x; - else - return y < 0 ? 1.0 / 0.0 : 0.0; /* return 0 */ - } - - qx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ - qy = v.i[HIGH_HALF] & 0x7fffffff; /* no sign */ - - if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) /* NaN */ - return x + y; - if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) /* NaN */ - return x == 1.0 && !issignaling (y) ? 1.0 : y + y; - - /* if x<0 */ - if (u.i[HIGH_HALF] < 0) - { - k = checkint (y); - if (k == 0) - { - if (qy == 0x7ff00000) - { - if (x == -1.0) - return 1.0; - else if (x > -1.0) - return v.i[HIGH_HALF] < 0 ? INF.x : 0.0; - else - return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x; - } - else if (qx == 0x7ff00000) - return y < 0 ? 0.0 : INF.x; - return (x - x) / (x - x); /* y not integer and x<0 */ - } - else if (qx == 0x7ff00000) - { - if (k < 0) - return y < 0 ? nZERO.x : nINF.x; - else - return y < 0 ? 0.0 : INF.x; - } - /* if y even or odd */ - if (k == 1) - return __ieee754_pow (-x, y); - else - { - double retval; - { - SET_RESTORE_ROUND (FE_TONEAREST); - retval = -__ieee754_pow (-x, y); - } - if (isinf (retval)) - retval = -huge * huge; - else if (retval == 0) - retval = -tiny * tiny; - return retval; - } - } - /* x>0 */ - - if (qx == 0x7ff00000) /* x= 2^-0x3ff */ - return y > 0 ? x : 0; - - if (qy > 0x45f00000 && qy < 0x7ff00000) - { - if (x == 1.0) - return 1.0; - if (y > 0) - return (x > 1.0) ? huge * huge : tiny * tiny; - if (y < 0) - return (x < 1.0) ? huge * huge : tiny * tiny; - } - - if (x == 1.0) - return 1.0; - if (y > 0) - return (x > 1.0) ? INF.x : 0; - if (y < 0) - return (x < 1.0) ? INF.x : 0; - return 0; /* unreachable, to make the compiler happy */ -} - -#ifndef __ieee754_pow -strong_alias (__ieee754_pow, __pow_finite) -#endif - -/* Compute x^y using more accurate but more slow log routine. */ -static double -SECTION -power1 (double x, double y) -{ - double z, a, aa, error, t, a1, a2, y1, y2; - z = my_log2 (x, &aa, &error); - t = y * CN; - y1 = t - (t - y); - y2 = y - y1; - t = z * CN; - a1 = t - (t - z); - a2 = z - a1; - a = y * z; - aa = ((y1 * a1 - a) + y1 * a2 + y2 * a1) + y2 * a2 + aa * y; - a1 = a + aa; - a2 = (a - a1) + aa; - error = error * fabs (y); - t = __exp1 (a1, a2, 1.9e16 * error); - return (t >= 0) ? t : __slowpow (x, y, z); -} - -/* Compute log(x) (x is left argument). The result is the returned double + the - parameter DELTA. The result is bounded by ERROR. */ -static double -SECTION -log1 (double x, double *delta, double *error) -{ - unsigned int i, j; - int m; - double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; - mynumber u, v; -#ifdef BIG_ENDI - mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ -#else -# ifdef LITTLE_ENDI - mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ -# endif -#endif - - u.x = x; - m = u.i[HIGH_HALF]; - *error = 0; - *delta = 0; - if (m < 0x00100000) /* 1<x<2^-1007 */ - { - x = x * t52.x; - add = -52.0; - u.x = x; - m = u.i[HIGH_HALF]; - } - - if ((m & 0x000fffff) < 0x0006a09e) - { - u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3ff00000; - two52.i[LOW_HALF] = (m >> 20); - } - else - { - u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; - two52.i[LOW_HALF] = (m >> 20) + 1; - } - - v.x = u.x + bigu.x; - uu = v.x - bigu.x; - i = (v.i[LOW_HALF] & 0x000003ff) << 2; - if (two52.i[LOW_HALF] == 1023) /* nx = 0 */ - { - if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */ - { - t = x - 1.0; - t1 = (t + 5.0e6) - 5.0e6; - t2 = t - t1; - e1 = t - 0.5 * t1 * t1; - e2 = (t * t * t * (r3 + t * (r4 + t * (r5 + t * (r6 + t - * (r7 + t * r8))))) - - 0.5 * t2 * (t + t1)); - res = e1 + e2; - *error = 1.0e-21 * fabs (t); - *delta = (e1 - res) + e2; - return res; - } /* |x-1| < 1.5*2**-10 */ - else - { - v.x = u.x * (ui.x[i] + ui.x[i + 1]) + bigv.x; - vv = v.x - bigv.x; - j = v.i[LOW_HALF] & 0x0007ffff; - j = j + j + j; - eps = u.x - uu * vv; - e1 = eps * ui.x[i]; - e2 = eps * (ui.x[i + 1] + vj.x[j] * (ui.x[i] + ui.x[i + 1])); - e = e1 + e2; - e2 = ((e1 - e) + e2); - t = ui.x[i + 2] + vj.x[j + 1]; - t1 = t + e; - t2 = ((((t - t1) + e) + (ui.x[i + 3] + vj.x[j + 2])) + e2 + e * e - * (p2 + e * (p3 + e * p4))); - res = t1 + t2; - *error = 1.0e-24; - *delta = (t1 - res) + t2; - return res; - } - } /* nx = 0 */ - else /* nx != 0 */ - { - eps = u.x - uu; - nx = (two52.x - two52e.x) + add; - e1 = eps * ui.x[i]; - e2 = eps * ui.x[i + 1]; - e = e1 + e2; - e2 = (e1 - e) + e2; - t = nx * ln2a.x + ui.x[i + 2]; - t1 = t + e; - t2 = ((((t - t1) + e) + nx * ln2b.x + ui.x[i + 3] + e2) + e * e - * (q2 + e * (q3 + e * (q4 + e * (q5 + e * q6))))); - res = t1 + t2; - *error = 1.0e-21; - *delta = (t1 - res) + t2; - return res; - } /* nx != 0 */ -} - -/* Slower but more accurate routine of log. The returned result is double + - DELTA. The result is bounded by ERROR. */ -static double -SECTION -my_log2 (double x, double *delta, double *error) -{ - unsigned int i, j; - int m; - double uu, vv, eps, nx, e, e1, e2, t, t1, t2, res, add = 0; - double ou1, ou2, lu1, lu2, ov, lv1, lv2, a, a1, a2; - double y, yy, z, zz, j1, j2, j7, j8; -#ifndef DLA_FMS - double j3, j4, j5, j6; -#endif - mynumber u, v; -#ifdef BIG_ENDI - mynumber /**/ two52 = {{0x43300000, 0x00000000}}; /* 2**52 */ -#else -# ifdef LITTLE_ENDI - mynumber /**/ two52 = {{0x00000000, 0x43300000}}; /* 2**52 */ -# endif -#endif - - u.x = x; - m = u.i[HIGH_HALF]; - *error = 0; - *delta = 0; - add = 0; - if (m < 0x00100000) - { /* x < 2^-1022 */ - x = x * t52.x; - add = -52.0; - u.x = x; - m = u.i[HIGH_HALF]; - } - - if ((m & 0x000fffff) < 0x0006a09e) - { - u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3ff00000; - two52.i[LOW_HALF] = (m >> 20); - } - else - { - u.i[HIGH_HALF] = (m & 0x000fffff) | 0x3fe00000; - two52.i[LOW_HALF] = (m >> 20) + 1; - } - - v.x = u.x + bigu.x; - uu = v.x - bigu.x; - i = (v.i[LOW_HALF] & 0x000003ff) << 2; - /*------------------------------------- |x-1| < 2**-11------------------------------- */ - if ((two52.i[LOW_HALF] == 1023) && (i == 1200)) - { - t = x - 1.0; - EMULV (t, s3, y, yy, j1, j2, j3, j4, j5); - ADD2 (-0.5, 0, y, yy, z, zz, j1, j2); - MUL2 (t, 0, z, zz, y, yy, j1, j2, j3, j4, j5, j6, j7, j8); - MUL2 (t, 0, y, yy, z, zz, j1, j2, j3, j4, j5, j6, j7, j8); - - e1 = t + z; - e2 = ((((t - e1) + z) + zz) + t * t * t - * (ss3 + t * (s4 + t * (s5 + t * (s6 + t * (s7 + t * s8)))))); - res = e1 + e2; - *error = 1.0e-25 * fabs (t); - *delta = (e1 - res) + e2; - return res; - } - /*----------------------------- |x-1| > 2**-11 -------------------------- */ - else - { /*Computing log(x) according to log table */ - nx = (two52.x - two52e.x) + add; - ou1 = ui.x[i]; - ou2 = ui.x[i + 1]; - lu1 = ui.x[i + 2]; - lu2 = ui.x[i + 3]; - v.x = u.x * (ou1 + ou2) + bigv.x; - vv = v.x - bigv.x; - j = v.i[LOW_HALF] & 0x0007ffff; - j = j + j + j; - eps = u.x - uu * vv; - ov = vj.x[j]; - lv1 = vj.x[j + 1]; - lv2 = vj.x[j + 2]; - a = (ou1 + ou2) * (1.0 + ov); - a1 = (a + 1.0e10) - 1.0e10; - a2 = a * (1.0 - a1 * uu * vv); - e1 = eps * a1; - e2 = eps * a2; - e = e1 + e2; - e2 = (e1 - e) + e2; - t = nx * ln2a.x + lu1 + lv1; - t1 = t + e; - t2 = ((((t - t1) + e) + (lu2 + lv2 + nx * ln2b.x + e2)) + e * e - * (p2 + e * (p3 + e * p4))); - res = t1 + t2; - *error = 1.0e-27; - *delta = (t1 - res) + t2; - return res; - } -} - -/* This function receives a double x and checks if it is an integer. If not, - it returns 0, else it returns 1 if even or -1 if odd. */ -static int -SECTION -checkint (double x) -{ - union - { - int4 i[2]; - double x; - } u; - int k, m, n; - u.x = x; - m = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ - if (m >= 0x7ff00000) - return 0; /* x is +/-inf or NaN */ - if (m >= 0x43400000) - return 1; /* |x| >= 2**53 */ - if (m < 0x40000000) - return 0; /* |x| < 2, can not be 0 or 1 */ - n = u.i[LOW_HALF]; - k = (m >> 20) - 1023; /* 1 <= k <= 52 */ - if (k == 52) - return (n & 1) ? -1 : 1; /* odd or even */ - if (k > 20) - { - if (n << (k - 20) != 0) - return 0; /* if not integer */ - return (n << (k - 21) != 0) ? -1 : 1; - } - if (n) - return 0; /*if not integer */ - if (k == 20) - return (m & 1) ? -1 : 1; - if (m << (k + 12) != 0) - return 0; - return (m << (k + 11) != 0) ? -1 : 1; -} |