aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_pow.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_pow.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow.c9
1 files changed, 5 insertions, 4 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
index 1e159f2c0b..83a5eff5c2 100644
--- a/sysdeps/ieee754/dbl-64/e_pow.c
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -1,7 +1,7 @@
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
- * Copyright (C) 2001, 2002, 2004 Free Software Foundation
+ * Copyright (C) 2001, 2002, 2004, 2011 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -22,12 +22,12 @@
/* */
/* FUNCTIONS: upow */
/* power1 */
-/* my_log2 */
+/* my_log2 */
/* log1 */
/* checkint */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */
/* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */
-/* uexp.c upow.c */
+/* uexp.c upow.c */
/* root.tbl uexp.tbl upow.tbl */
/* An ultimate power routine. Given two IEEE double machine numbers y,x */
/* it computes the correctly rounded (to nearest) value of x^y. */
@@ -77,7 +77,7 @@ double __ieee754_pow(double x, double y) {
/* else */
if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)|| /* x>0 and not x->0 */
(u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) &&
- /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
+ /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
(v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */
z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */
t = y*134217729.0;
@@ -153,6 +153,7 @@ double __ieee754_pow(double x, double y) {
if (y<0) return (x<1.0)?INF.x:0;
return 0; /* unreachable, to make the compiler happy */
}
+strong_alias (__ieee754_pow, __pow_finite)
/**************************************************************************/
/* Computing x^y using more accurate but more slow log routine */