aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_pow.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_pow.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow.c642
1 files changed, 307 insertions, 335 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
index 73e8f471f6..5c5bbb58d7 100644
--- a/sysdeps/ieee754/dbl-64/e_pow.c
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -1,356 +1,328 @@
-/* @(#)e_pow.c 5.1 93/09/24 */
/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
*
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
- for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
-#endif
-
-/* __ieee754_pow(x,y) return x**y
- *
- * n
- * Method: Let x = 2 * (1+f)
- * 1. Compute and return log2(x) in two pieces:
- * log2(x) = w1 + w2,
- * where w1 has 53-24 = 29 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
- * arithmetic, where |y'|<=0.5.
- * 3. Return x**y = 2**n*exp(y'*log2)
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
*
- * Special cases:
- * 1. (anything) ** 0 is 1
- * 2. (anything) ** 1 is itself
- * 3. (anything) ** NAN is NAN
- * 4. NAN ** (anything except 0) is NAN
- * 5. +-(|x| > 1) ** +INF is +INF
- * 6. +-(|x| > 1) ** -INF is +0
- * 7. +-(|x| < 1) ** +INF is +0
- * 8. +-(|x| < 1) ** -INF is +INF
- * 9. +-1 ** +-INF is NAN
- * 10. +0 ** (+anything except 0, NAN) is +0
- * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
- * 12. +0 ** (-anything except 0, NAN) is +INF
- * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
- * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- * 15. +INF ** (+anything except 0,NAN) is +INF
- * 16. +INF ** (-anything except 0,NAN) is +0
- * 17. -INF ** (anything) = -0 ** (-anything)
- * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- * 19. (-anything except 0 and inf) ** (non-integer) is NAN
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
*
- * Accuracy:
- * pow(x,y) returns x**y nearly rounded. In particular
- * pow(integer,integer)
- * always returns the correct integer provided it is
- * representable.
- *
- * Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
+/***************************************************************************/
+/* MODULE_NAME: upow.c */
+/* */
+/* FUNCTIONS: upow */
+/* power1 */
+/* log2 */
+/* log1 */
+/* checkint */
+/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h */
+/* halfulp.c mpexp.c mplog.c slowexp.c slowpow.c mpa.c */
+/* uexp.c upow.c */
+/* root.tbl uexp.tbl upow.tbl */
+/* An ultimate power routine. Given two IEEE double machine numbers y,x */
+/* it computes the correctly rounded (to nearest) value of x^y. */
+/* Assumption: Machine arithmetic operations are performed in */
+/* round to nearest mode of IEEE 754 standard. */
+/* */
+/***************************************************************************/
+#include "endian.h"
+#include "upow.h"
+#include "dla.h"
+#include "mydefs.h"
+#include "MathLib.h"
+#include "upow.tbl"
-#include "math.h"
-#include "math_private.h"
-#define zero C[0]
-#define one C[1]
-#define two C[2]
-#define two53 C[3]
-#define huge C[4]
-#define tiny C[5]
-#define L1 C[6]
-#define L2 C[7]
-#define L3 C[8]
-#define L4 C[9]
-#define L5 C[10]
-#define L6 C[11]
-#define P1 C[12]
-#define P2 C[13]
-#define P3 C[14]
-#define P4 C[15]
-#define P5 C[16]
-#define lg2 C[17]
-#define lg2_h C[18]
-#define lg2_l C[19]
-#define ovt C[20]
-#define cp C[21]
-#define cp_h C[22]
-#define cp_l C[23]
-#define ivln2 C[24]
-#define ivln2_h C[25]
-#define ivln2_l C[26]
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-bp[] = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
-dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
-C[] = {
-0.0,
-1.0,
-2.0,
-9007199254740992.0 ,
-1.0e300,
-1.0e-300,
-5.99999999999994648725e-01 ,
-4.28571428578550184252e-01 ,
-3.33333329818377432918e-01 ,
-2.72728123808534006489e-01 ,
-2.30660745775561754067e-01 ,
-2.06975017800338417784e-01 ,
-1.66666666666666019037e-01 ,
--2.77777777770155933842e-03 ,
-6.61375632143793436117e-05 ,
--1.65339022054652515390e-06 ,
-4.13813679705723846039e-08 ,
-6.93147180559945286227e-01 ,
-6.93147182464599609375e-01 ,
--1.90465429995776804525e-09 ,
-8.0085662595372944372e-0017 ,
-9.61796693925975554329e-01 ,
-9.61796700954437255859e-01 ,
--7.02846165095275826516e-09 ,
-1.44269504088896338700e+00 ,
-1.44269502162933349609e+00 ,
-1.92596299112661746887e-08 };
+double __exp1(double x, double xx, double error);
+static double log1(double x, double *delta, double *error);
+static double log2(double x, double *delta, double *error);
+double slowpow(double x, double y,double z);
+static double power1(double x, double y);
+static int checkint(double x);
-#ifdef __STDC__
- double __ieee754_pow(double x, double y)
-#else
- double __ieee754_pow(x,y)
- double x, y;
-#endif
-{
- double z,ax,z_h,z_l,p_h,p_l;
- double y1,t1,t2,r,s,t,u,v,w, t12,t14,r_1,r_2,r_3;
- int32_t i,j,k,yisint,n;
- int32_t hx,hy,ix,iy;
- u_int32_t lx,ly;
+/***************************************************************************/
+/* An ultimate power routine. Given two IEEE double machine numbers y,x */
+/* it computes the correctly rounded (to nearest) value of X^y. */
+/***************************************************************************/
+double __ieee754_upow(double x, double y) {
+ double z,a,aa,error, t,a1,a2,y1,y2,gor=1.0;
+ mynumber u,v;
+ int k;
+ int4 qx,qy;
+ v.x=y;
+ u.x=x;
+ if (v.i[LOW_HALF] == 0) { /* of y */
+ qx = u.i[HIGH_HALF]&0x7fffffff;
+ /* Checking if x is not too small to compute */
+ if (((qx==0x7ff00000)&&(u.i[LOW_HALF]!=0))||(qx>0x7ff00000)) return NaNQ.x;
+ if (y == 1.0) return x;
+ if (y == 2.0) return x*x;
+ if (y == -1.0) return (x!=0)?1.0/x:NaNQ.x;
+ if (y == 0) return ((x>0)&&(qx<0x7ff00000))?1.0:NaNQ.x;
+ }
+ /* else */
+ if(((u.i[HIGH_HALF]>0 && u.i[HIGH_HALF]<0x7ff00000)|| /* x>0 and not x->0 */
+ (u.i[HIGH_HALF]==0 && u.i[LOW_HALF]!=0)) &&
+ /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */
+ (v.i[HIGH_HALF]&0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */
+ z = log1(x,&aa,&error); /* x^y =e^(y log (X)) */
+ t = y*134217729.0;
+ y1 = t - (t-y);
+ y2 = y - y1;
+ t = z*134217729.0;
+ a1 = t - (t-z);
+ a2 = (z - a1)+aa;
+ a = y1*a1;
+ aa = y2*a1 + y*a2;
+ a1 = a+aa;
+ a2 = (a-a1)+aa;
+ error = error*ABS(y);
+ t = __exp1(a1,a2,1.9e16*error); /* return -10 or 0 if wasn't computed exactly */
+ return (t>0)?t:power1(x,y);
+ }
- EXTRACT_WORDS(hx,lx,x);
- EXTRACT_WORDS(hy,ly,y);
- ix = hx&0x7fffffff; iy = hy&0x7fffffff;
+ if (x == 0) {
+ if (ABS(y) > 1.0e20) return (y>0)?0:NaNQ.x;
+ k = checkint(y);
+ if (k == 0 || y < 0) return NaNQ.x;
+ else return (k==1)?0:x; /* return 0 */
+ }
+ /* if x<0 */
+ if (u.i[HIGH_HALF] < 0) {
+ k = checkint(y);
+ if (k==0) return NaNQ.x; /* y not integer and x<0 */
+ return (k==1)?upow(-x,y):-upow(-x,y); /* if y even or odd */
+ }
+ /* x>0 */
+ qx = u.i[HIGH_HALF]&0x7fffffff; /* no sign */
+ qy = v.i[HIGH_HALF]&0x7fffffff; /* no sign */
- /* y==zero: x**0 = 1 */
- if((iy|ly)==0) return C[1];
+ if (qx > 0x7ff00000 || (qx == 0x7ff00000 && u.i[LOW_HALF] != 0)) return NaNQ.x;
+ /* if 0<x<2^-0x7fe */
+ if (qy > 0x7ff00000 || (qy == 0x7ff00000 && v.i[LOW_HALF] != 0)) return NaNQ.x;
+ /* if y<2^-0x7fe */
- /* x==+-1 */
- if(x == 1.0) return C[1];
- if(x == -1.0 && isinf(y)) return C[1];
+ if (qx == 0x7ff00000) /* x= 2^-0x3ff */
+ {if (y == 0) return NaNQ.x;
+ return (y>0)?x:0; }
- /* +-NaN return x+y */
- if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
- iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
- return x+y;
+ if (qy > 0x45f00000 && qy < 0x7ff00000) {
+ if (x == 1.0) return 1.0;
+ if (y>0) return (x>1.0)?INF.x:0;
+ if (y<0) return (x<1.0)?INF.x:0;
+ }
- /* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
- */
- yisint = 0;
- if(hx<0) {
- if(iy>=0x43400000) yisint = 2; /* even integer y */
- else if(iy>=0x3ff00000) {
- k = (iy>>20)-0x3ff; /* exponent */
- if(k>20) {
- j = ly>>(52-k);
- if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
- } else if(ly==0) {
- j = iy>>(20-k);
- if((int32_t)(j<<(20-k))==iy) yisint = 2-(j&1);
- }
- }
- }
+ if (x == 1.0) return NaNQ.x;
+ if (y>0) return (x>1.0)?INF.x:0;
+ if (y<0) return (x<1.0)?INF.x:0;
+ return 0; /* unreachable, to make the compiler happy */
+}
- /* special value of y */
- if(ly==0) {
- if (iy==0x7ff00000) { /* y is +-inf */
- if(((ix-0x3ff00000)|lx)==0)
- return y - y; /* inf**+-1 is NaN */
- else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
- return (hy>=0)? y: C[0];
- else /* (|x|<1)**-,+inf = inf,0 */
- return (hy<0)?-y: C[0];
- }
- if(iy==0x3ff00000) { /* y is +-1 */
- if(hy<0) return C[1]/x; else return x;
- }
- if(hy==0x40000000) return x*x; /* y is 2 */
- if(hy==0x3fe00000) { /* y is 0.5 */
- if(hx>=0) /* x >= +0 */
- return __ieee754_sqrt(x);
- }
- }
+/**************************************************************************/
+/* Computing x^y using more accurate but more slow log routine */
+/**************************************************************************/
+static double power1(double x, double y) {
+ double z,a,aa,error, t,a1,a2,y1,y2;
+ z = log2(x,&aa,&error);
+ t = y*134217729.0;
+ y1 = t - (t-y);
+ y2 = y - y1;
+ t = z*134217729.0;
+ a1 = t - (t-z);
+ a2 = z - a1;
+ a = y*z;
+ aa = ((y1*a1-a)+y1*a2+y2*a1)+y2*a2+aa*y;
+ a1 = a+aa;
+ a2 = (a-a1)+aa;
+ error = error*ABS(y);
+ t = __exp1(a1,a2,1.9e16*error);
+ return (t >= 0)?t:slowpow(x,y,z);
+}
- ax = fabs(x);
- /* special value of x */
- if(lx==0) {
- if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
- z = ax; /*x is +-0,+-inf,+-1*/
- if(hy<0) z = C[1]/z; /* z = (1/|x|) */
- if(hx<0) {
- if(((ix-0x3ff00000)|yisint)==0) {
- z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- return z;
- }
- }
+/****************************************************************************/
+/* Computing log(x) (x is left argument). The result is the returned double */
+/* + the parameter delta. */
+/* The result is bounded by error (rightmost argument) */
+/****************************************************************************/
+static double log1(double x, double *delta, double *error) {
+ int i,j,m,n;
+ double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,cor,add=0;
+ mynumber u,v;
- /* (x<0)**(non-int) is NaN */
- if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
+ u.x = x;
+ m = u.i[HIGH_HALF];
+ *error = 0;
+ *delta = 0;
+ if (m < 0x00100000) /* 1<x<2^-1007 */
+ { x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF];}
- /* |y| is huge */
- if(iy>0x41e00000) { /* if |y| > 2**31 */
- if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
- if(ix<=0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
- if(ix>=0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
- }
- /* over/underflow if x is not close to one */
- if(ix<0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
- if(ix>0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
- /* now |1-x| is tiny <= 2**-20, suffice to compute
- log(x) by x-x^2/2+x^3/3-x^4/4 */
- t = x-1; /* t has 20 trailing zeros */
- w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
- u = C[25]*t; /* ivln2_h has 21 sig. bits */
- v = t*C[26]-w*C[24];
- t1 = u+v;
- SET_LOW_WORD(t1,0);
- t2 = v-(t1-u);
- } else {
- double s2,s_h,s_l,t_h,t_l,s22,s24,s26,r1,r2,r3;
- n = 0;
- /* take care subnormal number */
- if(ix<0x00100000)
- {ax *= C[3]; n -= 53; GET_HIGH_WORD(ix,ax); }
- n += ((ix)>>20)-0x3ff;
- j = ix&0x000fffff;
- /* determine interval */
- ix = j|0x3ff00000; /* normalize ix */
- if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
- else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
- else {k=0;n+=1;ix -= 0x00100000;}
- SET_HIGH_WORD(ax,ix);
+ if ((m&0x000fffff) < 0x0006a09e)
+ {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }
+ else
+ {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }
- /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
- v = C[1]/(ax+bp[k]);
- s = u*v;
- s_h = s;
- SET_LOW_WORD(s_h,0);
- /* t_h=ax+bp[k] High */
- t_h = C[0];
- SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
- t_l = ax - (t_h-bp[k]);
- s_l = v*((u-s_h*t_h)-s_h*t_l);
- /* compute log(ax) */
- s2 = s*s;
-#ifdef DO_NOT_USE_THIS
- r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
-#else
- r1 = C[10]+s2*C[11]; s22=s2*s2;
- r2 = C[8]+s2*C[9]; s24=s22*s22;
- r3 = C[6]+s2*C[7]; s26=s24*s22;
- r = r3*s22 + r2*s24 + r1*s26;
-#endif
- r += s_l*(s_h+s);
- s2 = s_h*s_h;
- t_h = 3.0+s2+r;
- SET_LOW_WORD(t_h,0);
- t_l = r-((t_h-3.0)-s2);
- /* u+v = s*(1+...) */
- u = s_h*t_h;
- v = s_l*t_h+t_l*s;
- /* 2/(3log2)*(s+...) */
- p_h = u+v;
- SET_LOW_WORD(p_h,0);
- p_l = v-(p_h-u);
- z_h = C[22]*p_h; /* cp_h+cp_l = 2/(3*log2) */
- z_l = C[23]*p_h+p_l*C[21]+dp_l[k];
- /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (double)n;
- t1 = (((z_h+z_l)+dp_h[k])+t);
- SET_LOW_WORD(t1,0);
- t2 = z_l-(((t1-t)-dp_h[k])-z_h);
- }
+ v.x = u.x + bigu.x;
+ uu = v.x - bigu.x;
+ i = (v.i[LOW_HALF]&0x000003ff)<<2;
+ if (two52.i[LOW_HALF] == 1023) /* nx = 0 */
+ {
+ if (i > 1192 && i < 1208) /* |x-1| < 1.5*2**-10 */
+ {
+ t = x - 1.0;
+ t1 = (t+5.0e6)-5.0e6;
+ t2 = t-t1;
+ e1 = t - 0.5*t1*t1;
+ e2 = t*t*t*(r3+t*(r4+t*(r5+t*(r6+t*(r7+t*r8)))))-0.5*t2*(t+t1);
+ res = e1+e2;
+ *error = 1.0e-21*ABS(t);
+ *delta = (e1-res)+e2;
+ return res;
+ } /* |x-1| < 1.5*2**-10 */
+ else
+ {
+ v.x = u.x*(ui.x[i]+ui.x[i+1])+bigv.x;
+ vv = v.x-bigv.x;
+ j = v.i[LOW_HALF]&0x0007ffff;
+ j = j+j+j;
+ eps = u.x - uu*vv;
+ e1 = eps*ui.x[i];
+ e2 = eps*(ui.x[i+1]+vj.x[j]*(ui.x[i]+ui.x[i+1]));
+ e = e1+e2;
+ e2 = ((e1-e)+e2);
+ t=ui.x[i+2]+vj.x[j+1];
+ t1 = t+e;
+ t2 = (((t-t1)+e)+(ui.x[i+3]+vj.x[j+2]))+e2+e*e*(p2+e*(p3+e*p4));
+ res=t1+t2;
+ *error = 1.0e-24;
+ *delta = (t1-res)+t2;
+ return res;
+ }
+ } /* nx = 0 */
+ else /* nx != 0 */
+ {
+ eps = u.x - uu;
+ nx = (two52.x - two52e.x)+add;
+ e1 = eps*ui.x[i];
+ e2 = eps*ui.x[i+1];
+ e=e1+e2;
+ e2 = (e1-e)+e2;
+ t=nx*ln2a.x+ui.x[i+2];
+ t1=t+e;
+ t2=(((t-t1)+e)+nx*ln2b.x+ui.x[i+3]+e2)+e*e*(q2+e*(q3+e*(q4+e*(q5+e*q6))));
+ res = t1+t2;
+ *error = 1.0e-21;
+ *delta = (t1-res)+t2;
+ return res;
+ } /* nx != 0 */
+}
+
+/****************************************************************************/
+/* More slow but more accurate routine of log */
+/* Computing log(x)(x is left argument).The result is return double + delta.*/
+/* The result is bounded by error (right argument) */
+/****************************************************************************/
+static double log2(double x, double *delta, double *error) {
+ int i,j,m,n;
+ double uu,vv,eps,nx,e,e1,e2,t,t1,t2,res,cor,add=0;
+ double ou1,ou2,lu1,lu2,ov,lv1,lv2,a,a1,a2;
+ double y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8;
+ mynumber u,v;
+
+ u.x = x;
+ m = u.i[HIGH_HALF];
+ *error = 0;
+ *delta = 0;
+ add=0;
+ if (m<0x00100000) { /* x < 2^-1022 */
+ x = x*t52.x; add = -52.0; u.x = x; m = u.i[HIGH_HALF]; }
- s = C[1]; /* s (sign of result -ve**odd) = -1 else = 1 */
- if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
- s = -C[1];/* (-ve)**(odd int) */
+ if ((m&0x000fffff) < 0x0006a09e)
+ {u.i[HIGH_HALF] = (m&0x000fffff)|0x3ff00000; two52.i[LOW_HALF]=(m>>20); }
+ else
+ {u.i[HIGH_HALF] = (m&0x000fffff)|0x3fe00000; two52.i[LOW_HALF]=(m>>20)+1; }
+
+ v.x = u.x + bigu.x;
+ uu = v.x - bigu.x;
+ i = (v.i[LOW_HALF]&0x000003ff)<<2;
+ /*------------------------------------- |x-1| < 2**-11------------------------------- */
+ if ((two52.i[LOW_HALF] == 1023) && (i == 1200))
+ {
+ t = x - 1.0;
+ EMULV(t,s3,y,yy,j1,j2,j3,j4,j5);
+ ADD2(-0.5,0,y,yy,z,zz,j1,j2);
+ MUL2(t,0,z,zz,y,yy,j1,j2,j3,j4,j5,j6,j7,j8);
+ MUL2(t,0,y,yy,z,zz,j1,j2,j3,j4,j5,j6,j7,j8);
+
+ e1 = t+z;
+ e2 = (((t-e1)+z)+zz)+t*t*t*(ss3+t*(s4+t*(s5+t*(s6+t*(s7+t*s8)))));
+ res = e1+e2;
+ *error = 1.0e-25*ABS(t);
+ *delta = (e1-res)+e2;
+ return res;
+ }
+ /*----------------------------- |x-1| > 2**-11 -------------------------- */
+ else
+ { /*Computing log(x) according to log table */
+ nx = (two52.x - two52e.x)+add;
+ ou1 = ui.x[i];
+ ou2 = ui.x[i+1];
+ lu1 = ui.x[i+2];
+ lu2 = ui.x[i+3];
+ v.x = u.x*(ou1+ou2)+bigv.x;
+ vv = v.x-bigv.x;
+ j = v.i[LOW_HALF]&0x0007ffff;
+ j = j+j+j;
+ eps = u.x - uu*vv;
+ ov = vj.x[j];
+ lv1 = vj.x[j+1];
+ lv2 = vj.x[j+2];
+ a = (ou1+ou2)*(1.0+ov);
+ a1 = (a+1.0e10)-1.0e10;
+ a2 = a*(1.0-a1*uu*vv);
+ e1 = eps*a1;
+ e2 = eps*a2;
+ e = e1+e2;
+ e2 = (e1-e)+e2;
+ t=nx*ln2a.x+lu1+lv1;
+ t1 = t+e;
+ t2 = (((t-t1)+e)+(lu2+lv2+nx*ln2b.x+e2))+e*e*(p2+e*(p3+e*p4));
+ res=t1+t2;
+ *error = 1.0e-27;
+ *delta = (t1-res)+t2;
+ return res;
+ }
+}
- /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
- y1 = y;
- SET_LOW_WORD(y1,0);
- p_l = (y-y1)*t1+y*t2;
- p_h = y1*t1;
- z = p_l+p_h;
- EXTRACT_WORDS(j,i,z);
- if (j>=0x40900000) { /* z >= 1024 */
- if(((j-0x40900000)|i)!=0) /* if z > 1024 */
- return s*C[4]*C[4]; /* overflow */
- else {
- if(p_l+C[20]>z-p_h) return s*C[4]*C[4]; /* overflow */
- }
- } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
- if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
- return s*C[5]*C[5]; /* underflow */
- else {
- if(p_l<=z-p_h) return s*C[5]*C[5]; /* underflow */
- }
- }
- /*
- * compute 2**(p_h+p_l)
- */
- i = j&0x7fffffff;
- k = (i>>20)-0x3ff;
- n = 0;
- if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
- n = j+(0x00100000>>(k+1));
- k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
- t = C[0];
- SET_HIGH_WORD(t,n&~(0x000fffff>>k));
- n = ((n&0x000fffff)|0x00100000)>>(20-k);
- if(j<0) n = -n;
- p_h -= t;
- }
- t = p_l+p_h;
- SET_LOW_WORD(t,0);
- u = t*C[18];
- v = (p_l-(t-p_h))*C[17]+t*C[19];
- z = u+v;
- w = v-(z-u);
- t = z*z;
-#ifdef DO_NOT_USE_THIS
- t1 = z - t*(C[12]+t*(C[13]+t*(C[14]+t*(C[15]+t*C[16]))));
-#else
- r_1 = C[15]+t*C[16]; t12 = t*t;
- r_2 = C[13]+t*C[14]; t14 = t12*t12;
- r_3 = t*C[12];
- t1 = z - r_3 - t12*r_2 - t14*r_1;
-#endif
- r = (z*t1)/(t1-C[2])-(w+z*w);
- z = C[1]-(r-z);
- GET_HIGH_WORD(j,z);
- j += (n<<20);
- if((j>>20)<=0) z = __scalbn(z,n); /* subnormal output */
- else SET_HIGH_WORD(z,j);
- return s*z;
+/**********************************************************************/
+/* Routine receives a double x and checks if it is an integer. If not */
+/* it returns 0, else it returns 1 if even or -1 if odd. */
+/**********************************************************************/
+static int checkint(double x) {
+ union {int4 i[2]; double x;} u;
+ int k,l,m,n;
+ u.x = x;
+ m = u.i[HIGH_HALF]&0x7fffffff; /* no sign */
+ if (m >= 0x7ff00000) return 0; /* x is +/-inf or NaN */
+ if (m >= 0x43400000) return 1; /* |x| >= 2**53 */
+ if (m < 0x40000000) return 0; /* |x| < 2, can not be 0 or 1 */
+ n = u.i[LOW_HALF];
+ k = (m>>20)-1023; /* 1 <= k <= 52 */
+ if (k == 52) return (n&1)? -1:1; /* odd or even*/
+ if (k>20) {
+ if (n<<(k-20)) return 0; /* if not integer */
+ return (n<<(k-21))?-1:1;
+ }
+ if (n) return 0; /*if not integer*/
+ if (k == 20) return (m&1)? -1:1;
+ if (m<<(k+12)) return 0;
+ return (m<<(k+11))?-1:1;
}