diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_log.c | 262 |
1 files changed, 0 insertions, 262 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c deleted file mode 100644 index e7cddc29c8..0000000000 --- a/sysdeps/ieee754/dbl-64/e_log.c +++ /dev/null @@ -1,262 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2017 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/*********************************************************************/ -/* */ -/* MODULE_NAME:ulog.c */ -/* */ -/* FUNCTION:ulog */ -/* */ -/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */ -/* mpexp.c mplog.c mpa.c */ -/* ulog.tbl */ -/* */ -/* An ultimate log routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of log(x). */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/*********************************************************************/ - - -#include "endian.h" -#include <dla.h> -#include "mpa.h" -#include "MathLib.h" -#include <math.h> -#include <math_private.h> -#include <stap-probe.h> - -#ifndef SECTION -# define SECTION -#endif - -void __mplog (mp_no *, mp_no *, int); - -/*********************************************************************/ -/* An ultimate log routine. Given an IEEE double machine number x */ -/* it computes the correctly rounded (to nearest) value of log(x). */ -/*********************************************************************/ -double -SECTION -__ieee754_log (double x) -{ -#define M 4 - static const int pr[M] = { 8, 10, 18, 32 }; - int i, j, n, ux, dx, p; - double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj, - sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb, - t1, t2, t7, t8, t, ra, rb, ww, - a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c; -#ifndef DLA_FMS - double t3, t4, t5, t6; -#endif - number num; - mp_no mpx, mpy, mpy1, mpy2, mperr; - -#include "ulog.tbl" -#include "ulog.h" - - /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */ - - num.d = x; - ux = num.i[HIGH_HALF]; - dx = num.i[LOW_HALF]; - n = 0; - if (__glibc_unlikely (ux < 0x00100000)) - { - if (__glibc_unlikely (((ux & 0x7fffffff) | dx) == 0)) - return MHALF / 0.0; /* return -INF */ - if (__glibc_unlikely (ux < 0)) - return (x - x) / 0.0; /* return NaN */ - n -= 54; - x *= two54.d; /* scale x */ - num.d = x; - } - if (__glibc_unlikely (ux >= 0x7ff00000)) - return x + x; /* INF or NaN */ - - /* Regular values of x */ - - w = x - 1; - if (__glibc_likely (fabs (w) > U03)) - goto case_03; - - /* log (1) is +0 in all rounding modes. */ - if (w == 0.0) - return 0.0; - - /*--- Stage I, the case abs(x-1) < 0.03 */ - - t8 = MHALF * w; - EMULV (t8, w, a, aa, t1, t2, t3, t4, t5); - EADD (w, a, b, bb); - /* Evaluate polynomial II */ - polII = b7.d + w * b8.d; - polII = b6.d + w * polII; - polII = b5.d + w * polII; - polII = b4.d + w * polII; - polII = b3.d + w * polII; - polII = b2.d + w * polII; - polII = b1.d + w * polII; - polII = b0.d + w * polII; - polII *= w * w * w; - c = (aa + bb) + polII; - - /* End stage I, case abs(x-1) < 0.03 */ - if ((y = b + (c + b * E2)) == b + (c - b * E2)) - return y; - - /*--- Stage II, the case abs(x-1) < 0.03 */ - - a = d19.d + w * d20.d; - a = d18.d + w * a; - a = d17.d + w * a; - a = d16.d + w * a; - a = d15.d + w * a; - a = d14.d + w * a; - a = d13.d + w * a; - a = d12.d + w * a; - a = d11.d + w * a; - - EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5); - ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2); - MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (w, 0, s3, ss3, b, bb, t1, t2); - - /* End stage II, case abs(x-1) < 0.03 */ - if ((y = b + (bb + b * E4)) == b + (bb - b * E4)) - return y; - goto stage_n; - - /*--- Stage I, the case abs(x-1) > 0.03 */ -case_03: - - /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */ - n += (num.i[HIGH_HALF] >> 20) - 1023; - num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000; - if (num.d > SQRT_2) - { - num.d *= HALF; - n++; - } - u = num.d; - dbl_n = (double) n; - - /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */ - num.d += h1.d; - i = (num.i[HIGH_HALF] & 0x000fffff) >> 12; - - /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */ - num.d = u * Iu[i].d + h2.d; - j = (num.i[HIGH_HALF] & 0x000fffff) >> 4; - - /* Compute w=(u-ui*vj)/(ui*vj) */ - p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V); - q = u - p0; - r0 = Iu[i].d * Iv[j].d; - w = q * r0; - - /* Evaluate polynomial I */ - polI = w + (a2.d + a3.d * w) * w * w; - - /* Add up everything */ - nln2a = dbl_n * LN2A; - luai = Lu[i][0].d; - lubi = Lu[i][1].d; - lvaj = Lv[j][0].d; - lvbj = Lv[j][1].d; - EADD (luai, lvaj, sij, ssij); - EADD (nln2a, sij, A, ttij); - B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B; - B = polI + B0; - - /* End stage I, case abs(x-1) >= 0.03 */ - if ((y = A + (B + E1)) == A + (B - E1)) - return y; - - - /*--- Stage II, the case abs(x-1) > 0.03 */ - - /* Improve the accuracy of r0 */ - EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5); - t = r0 * ((1 - sa) - sb); - EADD (r0, t, ra, rb); - - /* Compute w */ - MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8); - - EADD (A, B0, a0, aa0); - - /* Evaluate polynomial III */ - s1 = (c3.d + (c4.d + c5.d * w) * w) * w; - EADD (c2.d, s1, s2, ss2); - MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8); - MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8); - ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2); - ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2); - - /* End stage II, case abs(x-1) >= 0.03 */ - if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3)) - return y; - - - /* Final stages. Use multi-precision arithmetic. */ -stage_n: - - for (i = 0; i < M; i++) - { - p = pr[i]; - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __mplog (&mpx, &mpy, p); - __dbl_mp (e[i].d, &mperr, p); - __add (&mpy, &mperr, &mpy1, p); - __sub (&mpy, &mperr, &mpy2, p); - __mp_dbl (&mpy1, &y1, p); - __mp_dbl (&mpy2, &y2, p); - if (y1 == y2) - { - LIBC_PROBE (slowlog, 3, &p, &x, &y1); - return y1; - } - } - LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1); - return y1; -} - -#ifndef __ieee754_log -strong_alias (__ieee754_log, __log_finite) -#endif |