aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_log.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c262
1 files changed, 0 insertions, 262 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
deleted file mode 100644
index e7cddc29c8..0000000000
--- a/sysdeps/ieee754/dbl-64/e_log.c
+++ /dev/null
@@ -1,262 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/*********************************************************************/
-/* */
-/* MODULE_NAME:ulog.c */
-/* */
-/* FUNCTION:ulog */
-/* */
-/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
-/* mpexp.c mplog.c mpa.c */
-/* ulog.tbl */
-/* */
-/* An ultimate log routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of log(x). */
-/* Assumption: Machine arithmetic operations are performed in */
-/* round to nearest mode of IEEE 754 standard. */
-/* */
-/*********************************************************************/
-
-
-#include "endian.h"
-#include <dla.h>
-#include "mpa.h"
-#include "MathLib.h"
-#include <math.h>
-#include <math_private.h>
-#include <stap-probe.h>
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-void __mplog (mp_no *, mp_no *, int);
-
-/*********************************************************************/
-/* An ultimate log routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of log(x). */
-/*********************************************************************/
-double
-SECTION
-__ieee754_log (double x)
-{
-#define M 4
- static const int pr[M] = { 8, 10, 18, 32 };
- int i, j, n, ux, dx, p;
- double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
- sij, ssij, ttij, A, B, B0, y, y1, y2, polI, polII, sa, sb,
- t1, t2, t7, t8, t, ra, rb, ww,
- a0, aa0, s1, s2, ss2, s3, ss3, a1, aa1, a, aa, b, bb, c;
-#ifndef DLA_FMS
- double t3, t4, t5, t6;
-#endif
- number num;
- mp_no mpx, mpy, mpy1, mpy2, mperr;
-
-#include "ulog.tbl"
-#include "ulog.h"
-
- /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
-
- num.d = x;
- ux = num.i[HIGH_HALF];
- dx = num.i[LOW_HALF];
- n = 0;
- if (__glibc_unlikely (ux < 0x00100000))
- {
- if (__glibc_unlikely (((ux & 0x7fffffff) | dx) == 0))
- return MHALF / 0.0; /* return -INF */
- if (__glibc_unlikely (ux < 0))
- return (x - x) / 0.0; /* return NaN */
- n -= 54;
- x *= two54.d; /* scale x */
- num.d = x;
- }
- if (__glibc_unlikely (ux >= 0x7ff00000))
- return x + x; /* INF or NaN */
-
- /* Regular values of x */
-
- w = x - 1;
- if (__glibc_likely (fabs (w) > U03))
- goto case_03;
-
- /* log (1) is +0 in all rounding modes. */
- if (w == 0.0)
- return 0.0;
-
- /*--- Stage I, the case abs(x-1) < 0.03 */
-
- t8 = MHALF * w;
- EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
- EADD (w, a, b, bb);
- /* Evaluate polynomial II */
- polII = b7.d + w * b8.d;
- polII = b6.d + w * polII;
- polII = b5.d + w * polII;
- polII = b4.d + w * polII;
- polII = b3.d + w * polII;
- polII = b2.d + w * polII;
- polII = b1.d + w * polII;
- polII = b0.d + w * polII;
- polII *= w * w * w;
- c = (aa + bb) + polII;
-
- /* End stage I, case abs(x-1) < 0.03 */
- if ((y = b + (c + b * E2)) == b + (c - b * E2))
- return y;
-
- /*--- Stage II, the case abs(x-1) < 0.03 */
-
- a = d19.d + w * d20.d;
- a = d18.d + w * a;
- a = d17.d + w * a;
- a = d16.d + w * a;
- a = d15.d + w * a;
- a = d14.d + w * a;
- a = d13.d + w * a;
- a = d12.d + w * a;
- a = d11.d + w * a;
-
- EMULV (w, a, s2, ss2, t1, t2, t3, t4, t5);
- ADD2 (d10.d, dd10.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d9.d, dd9.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d8.d, dd8.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d7.d, dd7.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d6.d, dd6.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d5.d, dd5.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d4.d, dd4.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d3.d, dd3.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (d2.d, dd2.d, s2, ss2, s3, ss3, t1, t2);
- MUL2 (w, 0, s3, ss3, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- MUL2 (w, 0, s2, ss2, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (w, 0, s3, ss3, b, bb, t1, t2);
-
- /* End stage II, case abs(x-1) < 0.03 */
- if ((y = b + (bb + b * E4)) == b + (bb - b * E4))
- return y;
- goto stage_n;
-
- /*--- Stage I, the case abs(x-1) > 0.03 */
-case_03:
-
- /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
- n += (num.i[HIGH_HALF] >> 20) - 1023;
- num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
- if (num.d > SQRT_2)
- {
- num.d *= HALF;
- n++;
- }
- u = num.d;
- dbl_n = (double) n;
-
- /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
- num.d += h1.d;
- i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
-
- /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
- num.d = u * Iu[i].d + h2.d;
- j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
-
- /* Compute w=(u-ui*vj)/(ui*vj) */
- p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V);
- q = u - p0;
- r0 = Iu[i].d * Iv[j].d;
- w = q * r0;
-
- /* Evaluate polynomial I */
- polI = w + (a2.d + a3.d * w) * w * w;
-
- /* Add up everything */
- nln2a = dbl_n * LN2A;
- luai = Lu[i][0].d;
- lubi = Lu[i][1].d;
- lvaj = Lv[j][0].d;
- lvbj = Lv[j][1].d;
- EADD (luai, lvaj, sij, ssij);
- EADD (nln2a, sij, A, ttij);
- B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
- B = polI + B0;
-
- /* End stage I, case abs(x-1) >= 0.03 */
- if ((y = A + (B + E1)) == A + (B - E1))
- return y;
-
-
- /*--- Stage II, the case abs(x-1) > 0.03 */
-
- /* Improve the accuracy of r0 */
- EMULV (p0, r0, sa, sb, t1, t2, t3, t4, t5);
- t = r0 * ((1 - sa) - sb);
- EADD (r0, t, ra, rb);
-
- /* Compute w */
- MUL2 (q, 0, ra, rb, w, ww, t1, t2, t3, t4, t5, t6, t7, t8);
-
- EADD (A, B0, a0, aa0);
-
- /* Evaluate polynomial III */
- s1 = (c3.d + (c4.d + c5.d * w) * w) * w;
- EADD (c2.d, s1, s2, ss2);
- MUL2 (s2, ss2, w, ww, s3, ss3, t1, t2, t3, t4, t5, t6, t7, t8);
- MUL2 (s3, ss3, w, ww, s2, ss2, t1, t2, t3, t4, t5, t6, t7, t8);
- ADD2 (s2, ss2, w, ww, s3, ss3, t1, t2);
- ADD2 (s3, ss3, a0, aa0, a1, aa1, t1, t2);
-
- /* End stage II, case abs(x-1) >= 0.03 */
- if ((y = a1 + (aa1 + E3)) == a1 + (aa1 - E3))
- return y;
-
-
- /* Final stages. Use multi-precision arithmetic. */
-stage_n:
-
- for (i = 0; i < M; i++)
- {
- p = pr[i];
- __dbl_mp (x, &mpx, p);
- __dbl_mp (y, &mpy, p);
- __mplog (&mpx, &mpy, p);
- __dbl_mp (e[i].d, &mperr, p);
- __add (&mpy, &mperr, &mpy1, p);
- __sub (&mpy, &mperr, &mpy2, p);
- __mp_dbl (&mpy1, &y1, p);
- __mp_dbl (&mpy2, &y2, p);
- if (y1 == y2)
- {
- LIBC_PROBE (slowlog, 3, &p, &x, &y1);
- return y1;
- }
- }
- LIBC_PROBE (slowlog_inexact, 3, &p, &x, &y1);
- return y1;
-}
-
-#ifndef __ieee754_log
-strong_alias (__ieee754_log, __log_finite)
-#endif