aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_log.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c257
1 files changed, 111 insertions, 146 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
index 2483dd8551..a56b714fb7 100644
--- a/sysdeps/ieee754/dbl-64/e_log.c
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -1,167 +1,132 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2018 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/*********************************************************************/
-/* */
-/* MODULE_NAME:ulog.c */
-/* */
-/* FUNCTION:ulog */
-/* */
-/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */
-/* ulog.tbl */
-/* */
-/* An ultimate log routine. Given an IEEE double machine number x */
-/* it computes the rounded (to nearest) value of log(x). */
-/* Assumption: Machine arithmetic operations are performed in */
-/* round to nearest mode of IEEE 754 standard. */
-/* */
-/*********************************************************************/
+/* Double-precision log(x) function.
+ Copyright (C) 2018 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
-#include "endian.h"
-#include <dla.h>
-#include "mpa.h"
-#include "MathLib.h"
#include <math.h>
-#include <math_private.h>
+#include <stdint.h>
+#include "math_config.h"
+
+#define T __log_data.tab
+#define T2 __log_data.tab2
+#define B __log_data.poly1
+#define A __log_data.poly
+#define Ln2hi __log_data.ln2hi
+#define Ln2lo __log_data.ln2lo
+#define N (1 << LOG_TABLE_BITS)
+#define OFF 0x3fe6000000000000
+
+/* Top 16 bits of a double. */
+static inline uint32_t
+top16 (double x)
+{
+ return asuint64 (x) >> 48;
+}
#ifndef SECTION
# define SECTION
#endif
-/*********************************************************************/
-/* An ultimate log routine. Given an IEEE double machine number x */
-/* it computes the rounded (to nearest) value of log(x). */
-/*********************************************************************/
double
SECTION
__ieee754_log (double x)
{
- int i, j, n, ux, dx;
- double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj,
- sij, ssij, ttij, A, B, B0, polI, polII, t8, a, aa, b, bb, c;
-#ifndef DLA_FMS
- double t1, t2, t3, t4, t5;
-#endif
- number num;
-
-#include "ulog.tbl"
-#include "ulog.h"
-
- /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */
-
- num.d = x;
- ux = num.i[HIGH_HALF];
- dx = num.i[LOW_HALF];
- n = 0;
- if (__glibc_unlikely (ux < 0x00100000))
+ /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
+ double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
+ uint64_t ix, iz, tmp;
+ uint32_t top;
+ int k, i;
+
+ ix = asuint64 (x);
+ top = top16 (x);
+
+#define LO asuint64 (1.0 - 0x1p-4)
+#define HI asuint64 (1.0 + 0x1.09p-4)
+ if (__glibc_unlikely (ix - LO < HI - LO))
{
- if (__glibc_unlikely (((ux & 0x7fffffff) | dx) == 0))
- return MHALF / 0.0; /* return -INF */
- if (__glibc_unlikely (ux < 0))
- return (x - x) / 0.0; /* return NaN */
- n -= 54;
- x *= two54.d; /* scale x */
- num.d = x;
+ /* Handle close to 1.0 inputs separately. */
+ /* Fix sign of zero with downward rounding when x==1. */
+ if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0)))
+ return 0;
+ r = x - 1.0;
+ r2 = r * r;
+ r3 = r * r2;
+ y = r3 * (B[1] + r * B[2] + r2 * B[3]
+ + r3 * (B[4] + r * B[5] + r2 * B[6]
+ + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
+ /* Worst-case error is around 0.507 ULP. */
+ w = r * 0x1p27;
+ double_t rhi = r + w - w;
+ double_t rlo = r - rhi;
+ w = rhi * rhi * B[0]; /* B[0] == -0.5. */
+ hi = r + w;
+ lo = r - hi + w;
+ lo += B[0] * rlo * (rhi + r);
+ y += lo;
+ y += hi;
+ return y;
}
- if (__glibc_unlikely (ux >= 0x7ff00000))
- return x + x; /* INF or NaN */
-
- /* Regular values of x */
-
- w = x - 1;
- if (__glibc_likely (fabs (w) > U03))
- goto case_03;
-
- /* log (1) is +0 in all rounding modes. */
- if (w == 0.0)
- return 0.0;
-
- /*--- The case abs(x-1) < 0.03 */
-
- t8 = MHALF * w;
- EMULV (t8, w, a, aa, t1, t2, t3, t4, t5);
- EADD (w, a, b, bb);
- /* Evaluate polynomial II */
- polII = b7.d + w * b8.d;
- polII = b6.d + w * polII;
- polII = b5.d + w * polII;
- polII = b4.d + w * polII;
- polII = b3.d + w * polII;
- polII = b2.d + w * polII;
- polII = b1.d + w * polII;
- polII = b0.d + w * polII;
- polII *= w * w * w;
- c = (aa + bb) + polII;
-
- /* Here b contains the high part of the result, and c the low part.
- Maximum error is b * 2.334e-19, so accuracy is >61 bits.
- Therefore max ULP error of b + c is ~0.502. */
- return b + c;
-
- /*--- The case abs(x-1) > 0.03 */
-case_03:
-
- /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */
- n += (num.i[HIGH_HALF] >> 20) - 1023;
- num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;
- if (num.d > SQRT_2)
+ if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
{
- num.d *= HALF;
- n++;
+ /* x < 0x1p-1022 or inf or nan. */
+ if (ix * 2 == 0)
+ return __math_divzero (1);
+ if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */
+ return x;
+ if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
+ return __math_invalid (x);
+ /* x is subnormal, normalize it. */
+ ix = asuint64 (x * 0x1p52);
+ ix -= 52ULL << 52;
}
- u = num.d;
- dbl_n = (double) n;
-
- /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */
- num.d += h1.d;
- i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;
-
- /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */
- num.d = u * Iu[i].d + h2.d;
- j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;
- /* Compute w=(u-ui*vj)/(ui*vj) */
- p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V);
- q = u - p0;
- r0 = Iu[i].d * Iv[j].d;
- w = q * r0;
-
- /* Evaluate polynomial I */
- polI = w + (a2.d + a3.d * w) * w * w;
-
- /* Add up everything */
- nln2a = dbl_n * LN2A;
- luai = Lu[i][0].d;
- lubi = Lu[i][1].d;
- lvaj = Lv[j][0].d;
- lvbj = Lv[j][1].d;
- EADD (luai, lvaj, sij, ssij);
- EADD (nln2a, sij, A, ttij);
- B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B;
- B = polI + B0;
-
- /* Here A contains the high part of the result, and B the low part.
- Maximum abs error is 6.095e-21 and min log (x) is 0.0295 since x > 1.03.
- Therefore max ULP error of A + B is ~0.502. */
- return A + B;
+ /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
+ The range is split into N subintervals.
+ The ith subinterval contains z and c is near its center. */
+ tmp = ix - OFF;
+ i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
+ k = (int64_t) tmp >> 52; /* arithmetic shift */
+ iz = ix - (tmp & 0xfffULL << 52);
+ invc = T[i].invc;
+ logc = T[i].logc;
+ z = asdouble (iz);
+
+ /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
+ /* r ~= z/c - 1, |r| < 1/(2*N). */
+#ifdef __FP_FAST_FMA
+ /* rounding error: 0x1p-55/N. */
+ r = __builtin_fma (z, invc, -1.0);
+#else
+ /* rounding error: 0x1p-55/N + 0x1p-66. */
+ r = (z - T2[i].chi - T2[i].clo) * invc;
+#endif
+ kd = (double_t) k;
+
+ /* hi + lo = r + log(c) + k*Ln2. */
+ w = kd * Ln2hi + logc;
+ hi = w + r;
+ lo = w - hi + r + kd * Ln2lo;
+
+ /* log(x) = lo + (log1p(r) - r) + hi. */
+ r2 = r * r; /* rounding error: 0x1p-54/N^2. */
+ /* Worst case error if |y| > 0x1p-4: 0.519 ULP (0.520 ULP without fma).
+ 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
+ y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
+ return y;
}
-
#ifndef __ieee754_log
strong_alias (__ieee754_log, __log_finite)
#endif