diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_log.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_log.c | 257 |
1 files changed, 111 insertions, 146 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c index 2483dd8551..a56b714fb7 100644 --- a/sysdeps/ieee754/dbl-64/e_log.c +++ b/sysdeps/ieee754/dbl-64/e_log.c @@ -1,167 +1,132 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001-2018 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, see <http://www.gnu.org/licenses/>. - */ -/*********************************************************************/ -/* */ -/* MODULE_NAME:ulog.c */ -/* */ -/* FUNCTION:ulog */ -/* */ -/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h */ -/* ulog.tbl */ -/* */ -/* An ultimate log routine. Given an IEEE double machine number x */ -/* it computes the rounded (to nearest) value of log(x). */ -/* Assumption: Machine arithmetic operations are performed in */ -/* round to nearest mode of IEEE 754 standard. */ -/* */ -/*********************************************************************/ +/* Double-precision log(x) function. + Copyright (C) 2018 Free Software Foundation, Inc. + This file is part of the GNU C Library. + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ -#include "endian.h" -#include <dla.h> -#include "mpa.h" -#include "MathLib.h" #include <math.h> -#include <math_private.h> +#include <stdint.h> +#include "math_config.h" + +#define T __log_data.tab +#define T2 __log_data.tab2 +#define B __log_data.poly1 +#define A __log_data.poly +#define Ln2hi __log_data.ln2hi +#define Ln2lo __log_data.ln2lo +#define N (1 << LOG_TABLE_BITS) +#define OFF 0x3fe6000000000000 + +/* Top 16 bits of a double. */ +static inline uint32_t +top16 (double x) +{ + return asuint64 (x) >> 48; +} #ifndef SECTION # define SECTION #endif -/*********************************************************************/ -/* An ultimate log routine. Given an IEEE double machine number x */ -/* it computes the rounded (to nearest) value of log(x). */ -/*********************************************************************/ double SECTION __ieee754_log (double x) { - int i, j, n, ux, dx; - double dbl_n, u, p0, q, r0, w, nln2a, luai, lubi, lvaj, lvbj, - sij, ssij, ttij, A, B, B0, polI, polII, t8, a, aa, b, bb, c; -#ifndef DLA_FMS - double t1, t2, t3, t4, t5; -#endif - number num; - -#include "ulog.tbl" -#include "ulog.h" - - /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */ - - num.d = x; - ux = num.i[HIGH_HALF]; - dx = num.i[LOW_HALF]; - n = 0; - if (__glibc_unlikely (ux < 0x00100000)) + /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ + double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo; + uint64_t ix, iz, tmp; + uint32_t top; + int k, i; + + ix = asuint64 (x); + top = top16 (x); + +#define LO asuint64 (1.0 - 0x1p-4) +#define HI asuint64 (1.0 + 0x1.09p-4) + if (__glibc_unlikely (ix - LO < HI - LO)) { - if (__glibc_unlikely (((ux & 0x7fffffff) | dx) == 0)) - return MHALF / 0.0; /* return -INF */ - if (__glibc_unlikely (ux < 0)) - return (x - x) / 0.0; /* return NaN */ - n -= 54; - x *= two54.d; /* scale x */ - num.d = x; + /* Handle close to 1.0 inputs separately. */ + /* Fix sign of zero with downward rounding when x==1. */ + if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0))) + return 0; + r = x - 1.0; + r2 = r * r; + r3 = r * r2; + y = r3 * (B[1] + r * B[2] + r2 * B[3] + + r3 * (B[4] + r * B[5] + r2 * B[6] + + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10]))); + /* Worst-case error is around 0.507 ULP. */ + w = r * 0x1p27; + double_t rhi = r + w - w; + double_t rlo = r - rhi; + w = rhi * rhi * B[0]; /* B[0] == -0.5. */ + hi = r + w; + lo = r - hi + w; + lo += B[0] * rlo * (rhi + r); + y += lo; + y += hi; + return y; } - if (__glibc_unlikely (ux >= 0x7ff00000)) - return x + x; /* INF or NaN */ - - /* Regular values of x */ - - w = x - 1; - if (__glibc_likely (fabs (w) > U03)) - goto case_03; - - /* log (1) is +0 in all rounding modes. */ - if (w == 0.0) - return 0.0; - - /*--- The case abs(x-1) < 0.03 */ - - t8 = MHALF * w; - EMULV (t8, w, a, aa, t1, t2, t3, t4, t5); - EADD (w, a, b, bb); - /* Evaluate polynomial II */ - polII = b7.d + w * b8.d; - polII = b6.d + w * polII; - polII = b5.d + w * polII; - polII = b4.d + w * polII; - polII = b3.d + w * polII; - polII = b2.d + w * polII; - polII = b1.d + w * polII; - polII = b0.d + w * polII; - polII *= w * w * w; - c = (aa + bb) + polII; - - /* Here b contains the high part of the result, and c the low part. - Maximum error is b * 2.334e-19, so accuracy is >61 bits. - Therefore max ULP error of b + c is ~0.502. */ - return b + c; - - /*--- The case abs(x-1) > 0.03 */ -case_03: - - /* Find n,u such that x = u*2**n, 1/sqrt(2) < u < sqrt(2) */ - n += (num.i[HIGH_HALF] >> 20) - 1023; - num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000; - if (num.d > SQRT_2) + if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) { - num.d *= HALF; - n++; + /* x < 0x1p-1022 or inf or nan. */ + if (ix * 2 == 0) + return __math_divzero (1); + if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ + return x; + if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) + return __math_invalid (x); + /* x is subnormal, normalize it. */ + ix = asuint64 (x * 0x1p52); + ix -= 52ULL << 52; } - u = num.d; - dbl_n = (double) n; - - /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */ - num.d += h1.d; - i = (num.i[HIGH_HALF] & 0x000fffff) >> 12; - - /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */ - num.d = u * Iu[i].d + h2.d; - j = (num.i[HIGH_HALF] & 0x000fffff) >> 4; - /* Compute w=(u-ui*vj)/(ui*vj) */ - p0 = (1 + (i - 75) * DEL_U) * (1 + (j - 180) * DEL_V); - q = u - p0; - r0 = Iu[i].d * Iv[j].d; - w = q * r0; - - /* Evaluate polynomial I */ - polI = w + (a2.d + a3.d * w) * w * w; - - /* Add up everything */ - nln2a = dbl_n * LN2A; - luai = Lu[i][0].d; - lubi = Lu[i][1].d; - lvaj = Lv[j][0].d; - lvbj = Lv[j][1].d; - EADD (luai, lvaj, sij, ssij); - EADD (nln2a, sij, A, ttij); - B0 = (((lubi + lvbj) + ssij) + ttij) + dbl_n * LN2B; - B = polI + B0; - - /* Here A contains the high part of the result, and B the low part. - Maximum abs error is 6.095e-21 and min log (x) is 0.0295 since x > 1.03. - Therefore max ULP error of A + B is ~0.502. */ - return A + B; + /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. + The range is split into N subintervals. + The ith subinterval contains z and c is near its center. */ + tmp = ix - OFF; + i = (tmp >> (52 - LOG_TABLE_BITS)) % N; + k = (int64_t) tmp >> 52; /* arithmetic shift */ + iz = ix - (tmp & 0xfffULL << 52); + invc = T[i].invc; + logc = T[i].logc; + z = asdouble (iz); + + /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */ + /* r ~= z/c - 1, |r| < 1/(2*N). */ +#ifdef __FP_FAST_FMA + /* rounding error: 0x1p-55/N. */ + r = __builtin_fma (z, invc, -1.0); +#else + /* rounding error: 0x1p-55/N + 0x1p-66. */ + r = (z - T2[i].chi - T2[i].clo) * invc; +#endif + kd = (double_t) k; + + /* hi + lo = r + log(c) + k*Ln2. */ + w = kd * Ln2hi + logc; + hi = w + r; + lo = w - hi + r + kd * Ln2lo; + + /* log(x) = lo + (log1p(r) - r) + hi. */ + r2 = r * r; /* rounding error: 0x1p-54/N^2. */ + /* Worst case error if |y| > 0x1p-4: 0.519 ULP (0.520 ULP without fma). + 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */ + y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi; + return y; } - #ifndef __ieee754_log strong_alias (__ieee754_log, __log_finite) #endif |