aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_exp.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_exp.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_exp.c361
1 files changed, 0 insertions, 361 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
deleted file mode 100644
index 6757a14ce1..0000000000
--- a/sysdeps/ieee754/dbl-64/e_exp.c
+++ /dev/null
@@ -1,361 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-/***************************************************************************/
-/* MODULE_NAME:uexp.c */
-/* */
-/* FUNCTION:uexp */
-/* exp1 */
-/* */
-/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
-/* mpa.c mpexp.x slowexp.c */
-/* */
-/* An ultimate exp routine. Given an IEEE double machine number x */
-/* it computes the correctly rounded (to nearest) value of e^x */
-/* Assumption: Machine arithmetic operations are performed in */
-/* round to nearest mode of IEEE 754 standard. */
-/* */
-/***************************************************************************/
-
-#include <math.h>
-#include "endian.h"
-#include "uexp.h"
-#include "mydefs.h"
-#include "MathLib.h"
-#include "uexp.tbl"
-#include <math_private.h>
-#include <fenv.h>
-#include <float.h>
-
-#ifndef SECTION
-# define SECTION
-#endif
-
-double __slowexp (double);
-
-/* An ultimate exp routine. Given an IEEE double machine number x it computes
- the correctly rounded (to nearest) value of e^x. */
-double
-SECTION
-__ieee754_exp (double x)
-{
- double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
- mynumber junk1, junk2, binexp = {{0, 0}};
- int4 i, j, m, n, ex;
- double retval;
-
- {
- SET_RESTORE_ROUND (FE_TONEAREST);
-
- junk1.x = x;
- m = junk1.i[HIGH_HALF];
- n = m & hugeint;
-
- if (n > smallint && n < bigint)
- {
- y = x * log2e.x + three51.x;
- bexp = y - three51.x; /* multiply the result by 2**bexp */
-
- junk1.x = y;
-
- eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
- t = x - bexp * ln_two1.x;
-
- y = t + three33.x;
- base = y - three33.x; /* t rounded to a multiple of 2**-18 */
- junk2.x = y;
- del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
- eps = del + del * del * (p3.x * del + p2.x);
-
- binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
-
- i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
- j = (junk2.i[LOW_HALF] & 511) << 1;
-
- al = coar.x[i] * fine.x[j];
- bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
- + coar.x[i + 1] * fine.x[j + 1]);
-
- rem = (bet + bet * eps) + al * eps;
- res = al + rem;
- cor = (al - res) + rem;
- if (res == (res + cor * err_0))
- {
- retval = res * binexp.x;
- goto ret;
- }
- else
- {
- retval = __slowexp (x);
- goto ret;
- } /*if error is over bound */
- }
-
- if (n <= smallint)
- {
- retval = 1.0;
- goto ret;
- }
-
- if (n >= badint)
- {
- if (n > infint)
- {
- retval = x + x;
- goto ret;
- } /* x is NaN */
- if (n < infint)
- {
- if (x > 0)
- goto ret_huge;
- else
- goto ret_tiny;
- }
- /* x is finite, cause either overflow or underflow */
- if (junk1.i[LOW_HALF] != 0)
- {
- retval = x + x;
- goto ret;
- } /* x is NaN */
- retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */
- goto ret;
- }
-
- y = x * log2e.x + three51.x;
- bexp = y - three51.x;
- junk1.x = y;
- eps = bexp * ln_two2.x;
- t = x - bexp * ln_two1.x;
- y = t + three33.x;
- base = y - three33.x;
- junk2.x = y;
- del = (t - base) - eps;
- eps = del + del * del * (p3.x * del + p2.x);
- i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
- j = (junk2.i[LOW_HALF] & 511) << 1;
- al = coar.x[i] * fine.x[j];
- bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
- + coar.x[i + 1] * fine.x[j + 1]);
- rem = (bet + bet * eps) + al * eps;
- res = al + rem;
- cor = (al - res) + rem;
- if (m >> 31)
- {
- ex = junk1.i[LOW_HALF];
- if (res < 1.0)
- {
- res += res;
- cor += cor;
- ex -= 1;
- }
- if (ex >= -1022)
- {
- binexp.i[HIGH_HALF] = (1023 + ex) << 20;
- if (res == (res + cor * err_0))
- {
- retval = res * binexp.x;
- goto ret;
- }
- else
- {
- retval = __slowexp (x);
- goto check_uflow_ret;
- } /*if error is over bound */
- }
- ex = -(1022 + ex);
- binexp.i[HIGH_HALF] = (1023 - ex) << 20;
- res *= binexp.x;
- cor *= binexp.x;
- eps = 1.0000000001 + err_0 * binexp.x;
- t = 1.0 + res;
- y = ((1.0 - t) + res) + cor;
- res = t + y;
- cor = (t - res) + y;
- if (res == (res + eps * cor))
- {
- binexp.i[HIGH_HALF] = 0x00100000;
- retval = (res - 1.0) * binexp.x;
- goto check_uflow_ret;
- }
- else
- {
- retval = __slowexp (x);
- goto check_uflow_ret;
- } /* if error is over bound */
- check_uflow_ret:
- if (retval < DBL_MIN)
- {
- double force_underflow = tiny * tiny;
- math_force_eval (force_underflow);
- }
- if (retval == 0)
- goto ret_tiny;
- goto ret;
- }
- else
- {
- binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
- if (res == (res + cor * err_0))
- retval = res * binexp.x * t256.x;
- else
- retval = __slowexp (x);
- if (isinf (retval))
- goto ret_huge;
- else
- goto ret;
- }
- }
-ret:
- return retval;
-
- ret_huge:
- return hhuge * hhuge;
-
- ret_tiny:
- return tiny * tiny;
-}
-#ifndef __ieee754_exp
-strong_alias (__ieee754_exp, __exp_finite)
-#endif
-
-/* Compute e^(x+xx). The routine also receives bound of error of previous
- calculation. If after computing exp the error exceeds the allowed bounds,
- the routine returns a non-positive number. Otherwise it returns the
- computed result, which is always positive. */
-double
-SECTION
-__exp1 (double x, double xx, double error)
-{
- double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
- mynumber junk1, junk2, binexp = {{0, 0}};
- int4 i, j, m, n, ex;
-
- junk1.x = x;
- m = junk1.i[HIGH_HALF];
- n = m & hugeint; /* no sign */
-
- if (n > smallint && n < bigint)
- {
- y = x * log2e.x + three51.x;
- bexp = y - three51.x; /* multiply the result by 2**bexp */
-
- junk1.x = y;
-
- eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
- t = x - bexp * ln_two1.x;
-
- y = t + three33.x;
- base = y - three33.x; /* t rounded to a multiple of 2**-18 */
- junk2.x = y;
- del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */
- eps = del + del * del * (p3.x * del + p2.x);
-
- binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
-
- i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
- j = (junk2.i[LOW_HALF] & 511) << 1;
-
- al = coar.x[i] * fine.x[j];
- bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
- + coar.x[i + 1] * fine.x[j + 1]);
-
- rem = (bet + bet * eps) + al * eps;
- res = al + rem;
- cor = (al - res) + rem;
- if (res == (res + cor * (1.0 + error + err_1)))
- return res * binexp.x;
- else
- return -10.0;
- }
-
- if (n <= smallint)
- return 1.0; /* if x->0 e^x=1 */
-
- if (n >= badint)
- {
- if (n > infint)
- return (zero / zero); /* x is NaN, return invalid */
- if (n < infint)
- return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny));
- /* x is finite, cause either overflow or underflow */
- if (junk1.i[LOW_HALF] != 0)
- return (zero / zero); /* x is NaN */
- return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */
- }
-
- y = x * log2e.x + three51.x;
- bexp = y - three51.x;
- junk1.x = y;
- eps = bexp * ln_two2.x;
- t = x - bexp * ln_two1.x;
- y = t + three33.x;
- base = y - three33.x;
- junk2.x = y;
- del = (t - base) + (xx - eps);
- eps = del + del * del * (p3.x * del + p2.x);
- i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
- j = (junk2.i[LOW_HALF] & 511) << 1;
- al = coar.x[i] * fine.x[j];
- bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
- + coar.x[i + 1] * fine.x[j + 1]);
- rem = (bet + bet * eps) + al * eps;
- res = al + rem;
- cor = (al - res) + rem;
- if (m >> 31)
- {
- ex = junk1.i[LOW_HALF];
- if (res < 1.0)
- {
- res += res;
- cor += cor;
- ex -= 1;
- }
- if (ex >= -1022)
- {
- binexp.i[HIGH_HALF] = (1023 + ex) << 20;
- if (res == (res + cor * (1.0 + error + err_1)))
- return res * binexp.x;
- else
- return -10.0;
- }
- ex = -(1022 + ex);
- binexp.i[HIGH_HALF] = (1023 - ex) << 20;
- res *= binexp.x;
- cor *= binexp.x;
- eps = 1.00000000001 + (error + err_1) * binexp.x;
- t = 1.0 + res;
- y = ((1.0 - t) + res) + cor;
- res = t + y;
- cor = (t - res) + y;
- if (res == (res + eps * cor))
- {
- binexp.i[HIGH_HALF] = 0x00100000;
- return (res - 1.0) * binexp.x;
- }
- else
- return -10.0;
- }
- else
- {
- binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
- if (res == (res + cor * (1.0 + error + err_1)))
- return res * binexp.x * t256.x;
- else
- return -10.0;
- }
-}