aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_asin.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_asin.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_asin.c742
1 files changed, 611 insertions, 131 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_asin.c b/sysdeps/ieee754/dbl-64/e_asin.c
index aa19598848..2096de2297 100644
--- a/sysdeps/ieee754/dbl-64/e_asin.c
+++ b/sysdeps/ieee754/dbl-64/e_asin.c
@@ -1,143 +1,623 @@
-/* @(#)e_asin.c 5.1 93/09/24 */
/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * IBM Accurate Mathematical Library
+ * Copyright (c) International Business Machines Corp., 2001
*
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
- for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
-#endif
-
-/* __ieee754_asin(x)
- * Method :
- * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
- * we approximate asin(x) on [0,0.5] by
- * asin(x) = x + x*x^2*R(x^2)
- * where
- * R(x^2) is a rational approximation of (asin(x)-x)/x^3
- * and its remez error is bounded by
- * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
*
- * For x in [0.5,1]
- * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
- * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
- * then for x>0.98
- * asin(x) = pi/2 - 2*(s+s*z*R(z))
- * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
- * For x<=0.98, let pio4_hi = pio2_hi/2, then
- * f = hi part of s;
- * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
- * and
- * asin(x) = pi/2 - 2*(s+s*z*R(z))
- * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
- * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
- *
- * Special cases:
- * if x is NaN, return x itself;
- * if |x|>1, return NaN with invalid signal.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
*
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
+/******************************************************************/
+/* MODULE_NAME:uasncs.c */
+/* */
+/* FUNCTIONS: uasin */
+/* uacos */
+/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
+/* doasin.c sincos32.c dosincos.c mpa.c */
+/* sincos.tbl asincos.tbl powtwo.tbl root.tbl */
+/* */
+/* Ultimate asin/acos routines. Given an IEEE double machine */
+/* number x, compute the correctly rounded value of */
+/* arcsin(x)or arccos(x) according to the function called. */
+/* Assumption: Machine arithmetic operations are performed in */
+/* round to nearest mode of IEEE 754 standard. */
+/* */
+/******************************************************************/
+#include "endian.h"
+#include "mydefs.h"
+#include "asincos.tbl"
+#include "root.tbl"
+#include "powtwo.tbl"
+#include "MathLib.h"
+#include "uasncs.h"
+
+void __doasin(double x, double dx, double w[]);
+void __dubsin(double x, double dx, double v[]);
+void __dubcos(double x, double dx, double v[]);
+void __docos(double x, double dx, double v[]);
+double __sin32(double x, double res, double res1);
+double __cos32(double x, double res, double res1);
+
+/***************************************************************************/
+/* An ultimate asin routine. Given an IEEE double machine number x */
+/* it computes the correctly rounded (to nearest) value of arcsin(x) */
+/***************************************************************************/
+double __ieee754_asin(double x){
+ double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2];
+ mynumber u,v;
+ int4 k,m,n,nn;
+ u.x = x;
+ m = u.i[HIGH_HALF];
+ k = 0x7fffffff&m; /* no sign */
-#include "math.h"
-#include "math_private.h"
-#define one qS[0]
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-huge = 1.000e+300,
-pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
-pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
-pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
- /* coefficient for R(x^2) */
-pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
- -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
- 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
- -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
- 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
- 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
-qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
- 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
- -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
- 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
+ if (k < 0x3e500000) return x; /* for x->0 => sin(x)=x */
+ /*----------------------2^-26 <= |x| < 2^ -3 -----------------*/
+ else
+ if (k < 0x3fc00000) {
+ x2 = x*x;
+ t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
+ res = x+t; /* res=arcsin(x) according to Taylor series */
+ cor = (x-res)+t;
+ if (res == res+1.025*cor) return res;
+ else {
+ x1 = x+big;
+ xx = x*x;
+ x1 -= big;
+ x2 = x - x1;
+ p = x1*x1*x1;
+ s1 = a1.x*p;
+ s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
+ ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p;
+ res1 = x+s1;
+ s2 = ((x-res1)+s1)+s2;
+ res = res1+s2;
+ cor = (res1-res)+s2;
+ if (res == res+1.00014*cor) return res;
+ else {
+ __doasin(x,0,w);
+ if (w[0]==(w[0]+1.00000001*w[1])) return w[0];
+ else {
+ y=ABS(x);
+ res=ABS(w[0]);
+ res1=ABS(w[0]+1.1*w[1]);
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ }
+ }
+ /*---------------------0.125 <= |x| < 0.5 -----------------------------*/
+ else if (k < 0x3fe00000) {
+ if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
+ else n = 11*((k&0x000fffff)>>14)+352;
+ if (m>0) xx = x - asncs.x[n];
+ else xx = -x - asncs.x[n];
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
+ +xx*asncs.x[n+6]))))+asncs.x[n+7];
+ t+=p;
+ res =asncs.x[n+8] +t;
+ cor = (asncs.x[n+8]-res)+t;
+ if (res == res+1.05*cor) return (m>0)?res:-res;
+ else {
+ r=asncs.x[n+8]+xx*asncs.x[n+9];
+ t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]);
+ res = r+t;
+ cor = (r-res)+t;
+ if (res == res+1.0005*cor) return (m>0)?res:-res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __dubsin(res,z,w);
+ z=(w[0]-ABS(x))+w[1];
+ if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
+ else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
+ else {
+ y=ABS(x);
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ }
+ } /* else if (k < 0x3fe00000) */
+ /*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/
+ else
+ if (k < 0x3fe80000) {
+ n = 1056+((k&0x000fe000)>>11)*3;
+ if (m>0) xx = x - asncs.x[n];
+ else xx = -x - asncs.x[n];
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
+ +xx*(asncs.x[n+6]+xx*asncs.x[n+7])))))+asncs.x[n+8];
+ t+=p;
+ res =asncs.x[n+9] +t;
+ cor = (asncs.x[n+9]-res)+t;
+ if (res == res+1.01*cor) return (m>0)?res:-res;
+ else {
+ r=asncs.x[n+9]+xx*asncs.x[n+10];
+ t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]);
+ res = r+t;
+ cor = (r-res)+t;
+ if (res == res+1.0005*cor) return (m>0)?res:-res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __dubsin(res,z,w);
+ z=(w[0]-ABS(x))+w[1];
+ if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
+ else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
+ else {
+ y=ABS(x);
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ }
+ } /* else if (k < 0x3fe80000) */
+ /*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/
+ else
+ if (k < 0x3fed8000) {
+ n = 992+((k&0x000fe000)>>13)*13;
+ if (m>0) xx = x - asncs.x[n];
+ else xx = -x - asncs.x[n];
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5]
+ +xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+xx*asncs.x[n+8]))))))+asncs.x[n+9];
+ t+=p;
+ res =asncs.x[n+10] +t;
+ cor = (asncs.x[n+10]-res)+t;
+ if (res == res+1.01*cor) return (m>0)?res:-res;
+ else {
+ r=asncs.x[n+10]+xx*asncs.x[n+11];
+ t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]);
+ res = r+t;
+ cor = (r-res)+t;
+ if (res == res+1.0008*cor) return (m>0)?res:-res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ y=hp0.x-res;
+ z=((hp0.x-y)-res)+(hp1.x-z);
+ __dubcos(y,z,w);
+ z=(w[0]-ABS(x))+w[1];
+ if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
+ else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
+ else {
+ y=ABS(x);
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ }
+ } /* else if (k < 0x3fed8000) */
+ /*-------------------0.921875 <= |x| < 0.953125 ------------------------*/
+ else
+ if (k < 0x3fee8000) {
+ n = 884+((k&0x000fe000)>>13)*14;
+ if (m>0) xx = x - asncs.x[n];
+ else xx = -x - asncs.x[n];
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
+ +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
+ xx*asncs.x[n+9])))))))+asncs.x[n+10];
+ t+=p;
+ res =asncs.x[n+11] +t;
+ cor = (asncs.x[n+11]-res)+t;
+ if (res == res+1.01*cor) return (m>0)?res:-res;
+ else {
+ r=asncs.x[n+11]+xx*asncs.x[n+12];
+ t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]);
+ res = r+t;
+ cor = (r-res)+t;
+ if (res == res+1.0007*cor) return (m>0)?res:-res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ y=(hp0.x-res)-z;
+ z=y+hp1.x;
+ y=(y-z)+hp1.x;
+ __dubcos(z,y,w);
+ z=(w[0]-ABS(x))+w[1];
+ if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
+ else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
+ else {
+ y=ABS(x);
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ }
+ } /* else if (k < 0x3fee8000) */
-#ifdef __STDC__
- double __ieee754_asin(double x)
-#else
- double __ieee754_asin(x)
- double x;
-#endif
+ /*--------------------0.953125 <= |x| < 0.96875 ------------------------*/
+ else
+ if (k < 0x3fef0000) {
+ n = 768+((k&0x000fe000)>>13)*15;
+ if (m>0) xx = x - asncs.x[n];
+ else xx = -x - asncs.x[n];
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
+ +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
+ xx*(asncs.x[n+9]+xx*asncs.x[n+10]))))))))+asncs.x[n+11];
+ t+=p;
+ res =asncs.x[n+12] +t;
+ cor = (asncs.x[n+12]-res)+t;
+ if (res == res+1.01*cor) return (m>0)?res:-res;
+ else {
+ r=asncs.x[n+12]+xx*asncs.x[n+13];
+ t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]);
+ res = r+t;
+ cor = (r-res)+t;
+ if (res == res+1.0007*cor) return (m>0)?res:-res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ y=(hp0.x-res)-z;
+ z=y+hp1.x;
+ y=(y-z)+hp1.x;
+ __dubcos(z,y,w);
+ z=(w[0]-ABS(x))+w[1];
+ if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1);
+ else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1);
+ else {
+ y=ABS(x);
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ }
+ } /* else if (k < 0x3fef0000) */
+ /*--------------------0.96875 <= |x| < 1 --------------------------------*/
+ else
+ if (k<0x3ff00000) {
+ z = 0.5*((m>0)?(1.0-x):(1.0+x));
+ v.x=z;
+ k=v.i[HIGH_HALF];
+ t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
+ r=1.0-t*t*z;
+ t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
+ c=t*z;
+ t=c*(1.5-0.5*t*c);
+ y=(c+t24)-t24;
+ cc = (z-y*y)/(t+y);
+ p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
+ cor = (hp1.x - 2.0*cc)-2.0*(y+cc)*p;
+ res1 = hp0.x - 2.0*y;
+ res =res1 + cor;
+ if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res;
+ else {
+ c=y+cc;
+ cc=(y-c)+cc;
+ __doasin(c,cc,w);
+ res1=hp0.x-2.0*w[0];
+ cor=((hp0.x-res1)-2.0*w[0])+(hp1.x-2.0*w[1]);
+ res = res1+cor;
+ cor = (res1-res)+cor;
+ if (res==(res+1.0000001*cor)) return (m>0)?res:-res;
+ else {
+ y=ABS(x);
+ res1=res+1.1*cor;
+ return (m>0)?sin32(y,res,res1):-sin32(y,res,res1);
+ }
+ }
+ } /* else if (k < 0x3ff00000) */
+ /*---------------------------- |x|>=1 -------------------------------*/
+ else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x:-hp0.x;
+ else {
+ u.i[HIGH_HALF]=0x7ff00000;
+ v.i[HIGH_HALF]=0x7ff00000;
+ u.i[LOW_HALF]=0;
+ v.i[LOW_HALF]=0;
+ return u.x/v.x; /* NaN */
+ }
+}
+
+/*******************************************************************/
+/* */
+/* End of arcsine, below is arccosine */
+/* */
+/*******************************************************************/
+
+double __ieee754_acos(double x)
{
- double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,z2,z4,z6;
- int32_t hx,ix;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>= 0x3ff00000) { /* |x|>= 1 */
- u_int32_t lx;
- GET_LOW_WORD(lx,x);
- if(((ix-0x3ff00000)|lx)==0)
- /* asin(1)=+-pi/2 with inexact */
- return x*pio2_hi+x*pio2_lo;
- return (x-x)/(x-x); /* asin(|x|>1) is NaN */
- } else if (ix<0x3fe00000) { /* |x|<0.5 */
- if(ix<0x3e400000) { /* if |x| < 2**-27 */
- if(huge+x>one) return x;/* return x with inexact if x!=0*/
- } else {
- t = x*x;
-#ifdef DO_NOT_USE_THIS
- p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
- q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
-#else
- p1 = t*pS[0]; z2=t*t;
- p2 = pS[1]+t*pS[2]; z4=z2*z2;
- p3 = pS[3]+t*pS[4]; z6=z4*z2;
- q1 = one+t*qS[1];
- q2 = qS[2]+t*qS[3];
- p = p1 + z2*p2 + z4*p3 + z6*pS[5];
- q = q1 + z2*q2 + z4*qS[4];
-#endif
- w = p/q;
- return x+x*w;
- }
+ double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2],eps;
+ double fc;
+ mynumber u,v;
+ int4 k,m,n,nn;
+ u.x = x;
+ m = u.i[HIGH_HALF];
+ k = 0x7fffffff&m;
+ /*------------------- |x|<2.77556*10^-17 ----------------------*/
+ if (k < 0x3c880000) return hp0.x;
+
+ /*----------------- 2.77556*10^-17 <= |x| < 2^-3 --------------*/
+ else
+ if (k < 0x3fc00000) {
+ x2 = x*x;
+ t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x);
+ r=hp0.x-x;
+ cor=(((hp0.x-r)-x)+hp1.x)-t;
+ res = r+cor;
+ cor = (r-res)+cor;
+ if (res == res+1.004*cor) return res;
+ else {
+ x1 = x+big;
+ xx = x*x;
+ x1 -= big;
+ x2 = x - x1;
+ p = x1*x1*x1;
+ s1 = a1.x*p;
+ s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x +
+ ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p;
+ res1 = x+s1;
+ s2 = ((x-res1)+s1)+s2;
+ r=hp0.x-res1;
+ cor=(((hp0.x-r)-res1)+hp1.x)-s2;
+ res = r+cor;
+ cor = (r-res)+cor;
+ if (res == res+1.00004*cor) return res;
+ else {
+ __doasin(x,0,w);
+ r=hp0.x-w[0];
+ cor=((hp0.x-r)-w[0])+(hp1.x-w[1]);
+ res=r+cor;
+ cor=(r-res)+cor;
+ if (res ==(res +1.00000001*cor)) return res;
+ else {
+ res1=res+1.1*cor;
+ return cos32(x,res,res1);
}
- /* 1> |x|>= 0.5 */
- w = one-fabs(x);
- t = w*0.5;
-#ifdef DO_NOT_USE_THIS
- p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
- q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
-#else
- p1 = t*pS[0]; z2=t*t;
- p2 = pS[1]+t*pS[2]; z4=z2*z2;
- p3 = pS[3]+t*pS[4]; z6=z4*z2;
- q1 = one+t*qS[1];
- q2 = qS[2]+t*qS[3];
- p = p1 + z2*p2 + z4*p3 + z6*pS[5];
- q = q1 + z2*q2 + z4*qS[4];
-#endif
- s = __ieee754_sqrt(t);
- if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
- w = p/q;
- t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
- } else {
- w = s;
- SET_LOW_WORD(w,0);
- c = (t-w*w)/(s+w);
- r = p/q;
- p = 2.0*s*r-(pio2_lo-2.0*c);
- q = pio4_hi-2.0*w;
- t = pio4_hi-(p-q);
+ }
+ }
+ } /* else if (k < 0x3fc00000) */
+ /*---------------------- 0.125 <= |x| < 0.5 --------------------*/
+ else
+ if (k < 0x3fe00000) {
+ if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15);
+ else n = 11*((k&0x000fffff)>>14)+352;
+ if (m>0) xx = x - asncs.x[n];
+ else xx = -x - asncs.x[n];
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*asncs.x[n+6]))))+asncs.x[n+7];
+ t+=p;
+ y = (m>0)?(hp0.x-asncs.x[n+8]):(hp0.x+asncs.x[n+8]);
+ t = (m>0)?(hp1.x-t):(hp1.x+t);
+ res = y+t;
+ if (res == res+1.02*((y-res)+t)) return res;
+ else {
+ r=asncs.x[n+8]+xx*asncs.x[n+9];
+ t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]);
+ if (m>0)
+ {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; }
+ else
+ {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); }
+ res = p+t;
+ cor = (p-res)+t;
+ if (res == (res+1.0002*cor)) return res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __docos(res,z,w);
+ z=(w[0]-x)+w[1];
+ if (z>1.0e-27) return max(res,res1);
+ else if (z<-1.0e-27) return min(res,res1);
+ else return cos32(x,res,res1);
+ }
+ }
+ } /* else if (k < 0x3fe00000) */
+
+ /*--------------------------- 0.5 <= |x| < 0.75 ---------------------*/
+ else
+ if (k < 0x3fe80000) {
+ n = 1056+((k&0x000fe000)>>11)*3;
+ if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
+ else {xx = -x - asncs.x[n]; eps=1.02; }
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+
+ xx*asncs.x[n+7])))))+asncs.x[n+8];
+ t+=p;
+ y = (m>0)?(hp0.x-asncs.x[n+9]):(hp0.x+asncs.x[n+9]);
+ t = (m>0)?(hp1.x-t):(hp1.x+t);
+ res = y+t;
+ if (res == res+eps*((y-res)+t)) return res;
+ else {
+ r=asncs.x[n+9]+xx*asncs.x[n+10];
+ t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]);
+ if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0004; }
+ else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0002; }
+ res = p+t;
+ cor = (p-res)+t;
+ if (res == (res+eps*cor)) return res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __docos(res,z,w);
+ z=(w[0]-x)+w[1];
+ if (z>1.0e-27) return max(res,res1);
+ else if (z<-1.0e-27) return min(res,res1);
+ else return cos32(x,res,res1);
+ }
+ }
+ } /* else if (k < 0x3fe80000) */
+
+/*------------------------- 0.75 <= |x| < 0.921875 -------------*/
+ else
+ if (k < 0x3fed8000) {
+ n = 992+((k&0x000fe000)>>13)*13;
+ if (m>0) {xx = x - asncs.x[n]; eps = 1.04; }
+ else {xx = -x - asncs.x[n]; eps = 1.01; }
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+
+ xx*asncs.x[n+8]))))))+asncs.x[n+9];
+ t+=p;
+ y = (m>0)?(hp0.x-asncs.x[n+10]):(hp0.x+asncs.x[n+10]);
+ t = (m>0)?(hp1.x-t):(hp1.x+t);
+ res = y+t;
+ if (res == res+eps*((y-res)+t)) return res;
+ else {
+ r=asncs.x[n+10]+xx*asncs.x[n+11];
+ t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]);
+ if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0032; }
+ else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0008; }
+ res = p+t;
+ cor = (p-res)+t;
+ if (res == (res+eps*cor)) return res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __docos(res,z,w);
+ z=(w[0]-x)+w[1];
+ if (z>1.0e-27) return max(res,res1);
+ else if (z<-1.0e-27) return min(res,res1);
+ else return cos32(x,res,res1);
+ }
+ }
+ } /* else if (k < 0x3fed8000) */
+
+/*-------------------0.921875 <= |x| < 0.953125 ------------------*/
+ else
+ if (k < 0x3fee8000) {
+ n = 884+((k&0x000fe000)>>13)*14;
+ if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
+ else {xx = -x - asncs.x[n]; eps =1.005; }
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
+ +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+
+ xx*asncs.x[n+9])))))))+asncs.x[n+10];
+ t+=p;
+ y = (m>0)?(hp0.x-asncs.x[n+11]):(hp0.x+asncs.x[n+11]);
+ t = (m>0)?(hp1.x-t):(hp1.x+t);
+ res = y+t;
+ if (res == res+eps*((y-res)+t)) return res;
+ else {
+ r=asncs.x[n+11]+xx*asncs.x[n+12];
+ t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]);
+ if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; }
+ else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; }
+ res = p+t;
+ cor = (p-res)+t;
+ if (res == (res+eps*cor)) return res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __docos(res,z,w);
+ z=(w[0]-x)+w[1];
+ if (z>1.0e-27) return max(res,res1);
+ else if (z<-1.0e-27) return min(res,res1);
+ else return cos32(x,res,res1);
+ }
+ }
+ } /* else if (k < 0x3fee8000) */
+
+ /*--------------------0.953125 <= |x| < 0.96875 ----------------*/
+ else
+ if (k < 0x3fef0000) {
+ n = 768+((k&0x000fe000)>>13)*15;
+ if (m>0) {xx = x - asncs.x[n]; eps=1.04; }
+ else {xx = -x - asncs.x[n]; eps=1.005;}
+ t = asncs.x[n+1]*xx;
+ p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+
+ xx*(asncs.x[n+5]+xx*(asncs.x[n+6]
+ +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+xx*(asncs.x[n+9]+
+ xx*asncs.x[n+10]))))))))+asncs.x[n+11];
+ t+=p;
+ y = (m>0)?(hp0.x-asncs.x[n+12]):(hp0.x+asncs.x[n+12]);
+ t = (m>0)?(hp1.x-t):(hp1.x+t);
+ res = y+t;
+ if (res == res+eps*((y-res)+t)) return res;
+ else {
+ r=asncs.x[n+12]+xx*asncs.x[n+13];
+ t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]);
+ if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; }
+ else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; }
+ res = p+t;
+ cor = (p-res)+t;
+ if (res == (res+eps*cor)) return res;
+ else {
+ res1=res+1.1*cor;
+ z=0.5*(res1-res);
+ __docos(res,z,w);
+ z=(w[0]-x)+w[1];
+ if (z>1.0e-27) return max(res,res1);
+ else if (z<-1.0e-27) return min(res,res1);
+ else return cos32(x,res,res1);
+ }
+ }
+ } /* else if (k < 0x3fef0000) */
+ /*-----------------0.96875 <= |x| < 1 ---------------------------*/
+
+ else
+ if (k<0x3ff00000) {
+ z = 0.5*((m>0)?(1.0-x):(1.0+x));
+ v.x=z;
+ k=v.i[HIGH_HALF];
+ t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)];
+ r=1.0-t*t*z;
+ t = t*(rt0+r*(rt1+r*(rt2+r*rt3)));
+ c=t*z;
+ t=c*(1.5-0.5*t*c);
+ y = (t27*c+c)-t27*c;
+ cc = (z-y*y)/(t+y);
+ p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z;
+ if (m<0) {
+ cor = (hp1.x - cc)-(y+cc)*p;
+ res1 = hp0.x - y;
+ res =res1 + cor;
+ if (res == res+1.002*((res1-res)+cor)) return (res+res);
+ else {
+ c=y+cc;
+ cc=(y-c)+cc;
+ __doasin(c,cc,w);
+ res1=hp0.x-w[0];
+ cor=((hp0.x-res1)-w[0])+(hp1.x-w[1]);
+ res = res1+cor;
+ cor = (res1-res)+cor;
+ if (res==(res+1.000001*cor)) return (res+res);
+ else {
+ res=res+res;
+ res1=res+1.2*cor;
+ return cos32(x,res,res1);
}
- if(hx>0) return t; else return -t;
+ }
+ }
+ else {
+ cor = cc+p*(y+cc);
+ res = y + cor;
+ if (res == res+1.03*((y-res)+cor)) return (res+res);
+ else {
+ c=y+cc;
+ cc=(y-c)+cc;
+ __doasin(c,cc,w);
+ res = w[0];
+ cor=w[1];
+ if (res==(res+1.000001*cor)) return (res+res);
+ else {
+ res=res+res;
+ res1=res+1.2*cor;
+ return cos32(x,res,res1);
+ }
+ }
+ }
+ } /* else if (k < 0x3ff00000) */
+
+ /*---------------------------- |x|>=1 -----------------------*/
+ else
+ if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?0:2.0*hp0.x;
+ else {
+ u.i[HIGH_HALF]=0x7ff00000;
+ v.i[HIGH_HALF]=0x7ff00000;
+ u.i[LOW_HALF]=0;
+ v.i[LOW_HALF]=0;
+ return u.x/v.x;
+ }
}