diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_asin.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_asin.c | 742 |
1 files changed, 611 insertions, 131 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_asin.c b/sysdeps/ieee754/dbl-64/e_asin.c index aa19598848..2096de2297 100644 --- a/sysdeps/ieee754/dbl-64/e_asin.c +++ b/sysdeps/ieee754/dbl-64/e_asin.c @@ -1,143 +1,623 @@ -/* @(#)e_asin.c 5.1 93/09/24 */ /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * IBM Accurate Mathematical Library + * Copyright (c) International Business Machines Corp., 2001 * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, - for performance improvement on pipelined processors. -*/ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $"; -#endif - -/* __ieee754_asin(x) - * Method : - * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... - * we approximate asin(x) on [0,0.5] by - * asin(x) = x + x*x^2*R(x^2) - * where - * R(x^2) is a rational approximation of (asin(x)-x)/x^3 - * and its remez error is bounded by - * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU Lesser General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. * - * For x in [0.5,1] - * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) - * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; - * then for x>0.98 - * asin(x) = pi/2 - 2*(s+s*z*R(z)) - * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) - * For x<=0.98, let pio4_hi = pio2_hi/2, then - * f = hi part of s; - * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) - * and - * asin(x) = pi/2 - 2*(s+s*z*R(z)) - * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) - * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. * + * You should have received a copy of the GNU Lesser General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ +/******************************************************************/ +/* MODULE_NAME:uasncs.c */ +/* */ +/* FUNCTIONS: uasin */ +/* uacos */ +/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ +/* doasin.c sincos32.c dosincos.c mpa.c */ +/* sincos.tbl asincos.tbl powtwo.tbl root.tbl */ +/* */ +/* Ultimate asin/acos routines. Given an IEEE double machine */ +/* number x, compute the correctly rounded value of */ +/* arcsin(x)or arccos(x) according to the function called. */ +/* Assumption: Machine arithmetic operations are performed in */ +/* round to nearest mode of IEEE 754 standard. */ +/* */ +/******************************************************************/ +#include "endian.h" +#include "mydefs.h" +#include "asincos.tbl" +#include "root.tbl" +#include "powtwo.tbl" +#include "MathLib.h" +#include "uasncs.h" + +void __doasin(double x, double dx, double w[]); +void __dubsin(double x, double dx, double v[]); +void __dubcos(double x, double dx, double v[]); +void __docos(double x, double dx, double v[]); +double __sin32(double x, double res, double res1); +double __cos32(double x, double res, double res1); + +/***************************************************************************/ +/* An ultimate asin routine. Given an IEEE double machine number x */ +/* it computes the correctly rounded (to nearest) value of arcsin(x) */ +/***************************************************************************/ +double __ieee754_asin(double x){ + double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2]; + mynumber u,v; + int4 k,m,n,nn; + u.x = x; + m = u.i[HIGH_HALF]; + k = 0x7fffffff&m; /* no sign */ -#include "math.h" -#include "math_private.h" -#define one qS[0] -#ifdef __STDC__ -static const double -#else -static double -#endif -huge = 1.000e+300, -pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ -pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ -pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ - /* coefficient for R(x^2) */ -pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ - -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ - 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ - -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ - 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ - 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */ -qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ - 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ - -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ - 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */ + if (k < 0x3e500000) return x; /* for x->0 => sin(x)=x */ + /*----------------------2^-26 <= |x| < 2^ -3 -----------------*/ + else + if (k < 0x3fc00000) { + x2 = x*x; + t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x); + res = x+t; /* res=arcsin(x) according to Taylor series */ + cor = (x-res)+t; + if (res == res+1.025*cor) return res; + else { + x1 = x+big; + xx = x*x; + x1 -= big; + x2 = x - x1; + p = x1*x1*x1; + s1 = a1.x*p; + s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x + + ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p; + res1 = x+s1; + s2 = ((x-res1)+s1)+s2; + res = res1+s2; + cor = (res1-res)+s2; + if (res == res+1.00014*cor) return res; + else { + __doasin(x,0,w); + if (w[0]==(w[0]+1.00000001*w[1])) return w[0]; + else { + y=ABS(x); + res=ABS(w[0]); + res1=ABS(w[0]+1.1*w[1]); + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } + } + /*---------------------0.125 <= |x| < 0.5 -----------------------------*/ + else if (k < 0x3fe00000) { + if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15); + else n = 11*((k&0x000fffff)>>14)+352; + if (m>0) xx = x - asncs.x[n]; + else xx = -x - asncs.x[n]; + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] + +xx*asncs.x[n+6]))))+asncs.x[n+7]; + t+=p; + res =asncs.x[n+8] +t; + cor = (asncs.x[n+8]-res)+t; + if (res == res+1.05*cor) return (m>0)?res:-res; + else { + r=asncs.x[n+8]+xx*asncs.x[n+9]; + t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]); + res = r+t; + cor = (r-res)+t; + if (res == res+1.0005*cor) return (m>0)?res:-res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __dubsin(res,z,w); + z=(w[0]-ABS(x))+w[1]; + if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); + else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); + else { + y=ABS(x); + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } + } /* else if (k < 0x3fe00000) */ + /*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/ + else + if (k < 0x3fe80000) { + n = 1056+((k&0x000fe000)>>11)*3; + if (m>0) xx = x - asncs.x[n]; + else xx = -x - asncs.x[n]; + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] + +xx*(asncs.x[n+6]+xx*asncs.x[n+7])))))+asncs.x[n+8]; + t+=p; + res =asncs.x[n+9] +t; + cor = (asncs.x[n+9]-res)+t; + if (res == res+1.01*cor) return (m>0)?res:-res; + else { + r=asncs.x[n+9]+xx*asncs.x[n+10]; + t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]); + res = r+t; + cor = (r-res)+t; + if (res == res+1.0005*cor) return (m>0)?res:-res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __dubsin(res,z,w); + z=(w[0]-ABS(x))+w[1]; + if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); + else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); + else { + y=ABS(x); + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } + } /* else if (k < 0x3fe80000) */ + /*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/ + else + if (k < 0x3fed8000) { + n = 992+((k&0x000fe000)>>13)*13; + if (m>0) xx = x - asncs.x[n]; + else xx = -x - asncs.x[n]; + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] + +xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+xx*asncs.x[n+8]))))))+asncs.x[n+9]; + t+=p; + res =asncs.x[n+10] +t; + cor = (asncs.x[n+10]-res)+t; + if (res == res+1.01*cor) return (m>0)?res:-res; + else { + r=asncs.x[n+10]+xx*asncs.x[n+11]; + t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]); + res = r+t; + cor = (r-res)+t; + if (res == res+1.0008*cor) return (m>0)?res:-res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + y=hp0.x-res; + z=((hp0.x-y)-res)+(hp1.x-z); + __dubcos(y,z,w); + z=(w[0]-ABS(x))+w[1]; + if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); + else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); + else { + y=ABS(x); + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } + } /* else if (k < 0x3fed8000) */ + /*-------------------0.921875 <= |x| < 0.953125 ------------------------*/ + else + if (k < 0x3fee8000) { + n = 884+((k&0x000fe000)>>13)*14; + if (m>0) xx = x - asncs.x[n]; + else xx = -x - asncs.x[n]; + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*(asncs.x[n+6] + +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ + xx*asncs.x[n+9])))))))+asncs.x[n+10]; + t+=p; + res =asncs.x[n+11] +t; + cor = (asncs.x[n+11]-res)+t; + if (res == res+1.01*cor) return (m>0)?res:-res; + else { + r=asncs.x[n+11]+xx*asncs.x[n+12]; + t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]); + res = r+t; + cor = (r-res)+t; + if (res == res+1.0007*cor) return (m>0)?res:-res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + y=(hp0.x-res)-z; + z=y+hp1.x; + y=(y-z)+hp1.x; + __dubcos(z,y,w); + z=(w[0]-ABS(x))+w[1]; + if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); + else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); + else { + y=ABS(x); + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } + } /* else if (k < 0x3fee8000) */ -#ifdef __STDC__ - double __ieee754_asin(double x) -#else - double __ieee754_asin(x) - double x; -#endif + /*--------------------0.953125 <= |x| < 0.96875 ------------------------*/ + else + if (k < 0x3fef0000) { + n = 768+((k&0x000fe000)>>13)*15; + if (m>0) xx = x - asncs.x[n]; + else xx = -x - asncs.x[n]; + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*(asncs.x[n+6] + +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ + xx*(asncs.x[n+9]+xx*asncs.x[n+10]))))))))+asncs.x[n+11]; + t+=p; + res =asncs.x[n+12] +t; + cor = (asncs.x[n+12]-res)+t; + if (res == res+1.01*cor) return (m>0)?res:-res; + else { + r=asncs.x[n+12]+xx*asncs.x[n+13]; + t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]); + res = r+t; + cor = (r-res)+t; + if (res == res+1.0007*cor) return (m>0)?res:-res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + y=(hp0.x-res)-z; + z=y+hp1.x; + y=(y-z)+hp1.x; + __dubcos(z,y,w); + z=(w[0]-ABS(x))+w[1]; + if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); + else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); + else { + y=ABS(x); + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } + } /* else if (k < 0x3fef0000) */ + /*--------------------0.96875 <= |x| < 1 --------------------------------*/ + else + if (k<0x3ff00000) { + z = 0.5*((m>0)?(1.0-x):(1.0+x)); + v.x=z; + k=v.i[HIGH_HALF]; + t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)]; + r=1.0-t*t*z; + t = t*(rt0+r*(rt1+r*(rt2+r*rt3))); + c=t*z; + t=c*(1.5-0.5*t*c); + y=(c+t24)-t24; + cc = (z-y*y)/(t+y); + p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z; + cor = (hp1.x - 2.0*cc)-2.0*(y+cc)*p; + res1 = hp0.x - 2.0*y; + res =res1 + cor; + if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res; + else { + c=y+cc; + cc=(y-c)+cc; + __doasin(c,cc,w); + res1=hp0.x-2.0*w[0]; + cor=((hp0.x-res1)-2.0*w[0])+(hp1.x-2.0*w[1]); + res = res1+cor; + cor = (res1-res)+cor; + if (res==(res+1.0000001*cor)) return (m>0)?res:-res; + else { + y=ABS(x); + res1=res+1.1*cor; + return (m>0)?sin32(y,res,res1):-sin32(y,res,res1); + } + } + } /* else if (k < 0x3ff00000) */ + /*---------------------------- |x|>=1 -------------------------------*/ + else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x:-hp0.x; + else { + u.i[HIGH_HALF]=0x7ff00000; + v.i[HIGH_HALF]=0x7ff00000; + u.i[LOW_HALF]=0; + v.i[LOW_HALF]=0; + return u.x/v.x; /* NaN */ + } +} + +/*******************************************************************/ +/* */ +/* End of arcsine, below is arccosine */ +/* */ +/*******************************************************************/ + +double __ieee754_acos(double x) { - double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,z2,z4,z6; - int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>= 0x3ff00000) { /* |x|>= 1 */ - u_int32_t lx; - GET_LOW_WORD(lx,x); - if(((ix-0x3ff00000)|lx)==0) - /* asin(1)=+-pi/2 with inexact */ - return x*pio2_hi+x*pio2_lo; - return (x-x)/(x-x); /* asin(|x|>1) is NaN */ - } else if (ix<0x3fe00000) { /* |x|<0.5 */ - if(ix<0x3e400000) { /* if |x| < 2**-27 */ - if(huge+x>one) return x;/* return x with inexact if x!=0*/ - } else { - t = x*x; -#ifdef DO_NOT_USE_THIS - p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); - q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); -#else - p1 = t*pS[0]; z2=t*t; - p2 = pS[1]+t*pS[2]; z4=z2*z2; - p3 = pS[3]+t*pS[4]; z6=z4*z2; - q1 = one+t*qS[1]; - q2 = qS[2]+t*qS[3]; - p = p1 + z2*p2 + z4*p3 + z6*pS[5]; - q = q1 + z2*q2 + z4*qS[4]; -#endif - w = p/q; - return x+x*w; - } + double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2],eps; + double fc; + mynumber u,v; + int4 k,m,n,nn; + u.x = x; + m = u.i[HIGH_HALF]; + k = 0x7fffffff&m; + /*------------------- |x|<2.77556*10^-17 ----------------------*/ + if (k < 0x3c880000) return hp0.x; + + /*----------------- 2.77556*10^-17 <= |x| < 2^-3 --------------*/ + else + if (k < 0x3fc00000) { + x2 = x*x; + t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x); + r=hp0.x-x; + cor=(((hp0.x-r)-x)+hp1.x)-t; + res = r+cor; + cor = (r-res)+cor; + if (res == res+1.004*cor) return res; + else { + x1 = x+big; + xx = x*x; + x1 -= big; + x2 = x - x1; + p = x1*x1*x1; + s1 = a1.x*p; + s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x + + ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p; + res1 = x+s1; + s2 = ((x-res1)+s1)+s2; + r=hp0.x-res1; + cor=(((hp0.x-r)-res1)+hp1.x)-s2; + res = r+cor; + cor = (r-res)+cor; + if (res == res+1.00004*cor) return res; + else { + __doasin(x,0,w); + r=hp0.x-w[0]; + cor=((hp0.x-r)-w[0])+(hp1.x-w[1]); + res=r+cor; + cor=(r-res)+cor; + if (res ==(res +1.00000001*cor)) return res; + else { + res1=res+1.1*cor; + return cos32(x,res,res1); } - /* 1> |x|>= 0.5 */ - w = one-fabs(x); - t = w*0.5; -#ifdef DO_NOT_USE_THIS - p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); - q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); -#else - p1 = t*pS[0]; z2=t*t; - p2 = pS[1]+t*pS[2]; z4=z2*z2; - p3 = pS[3]+t*pS[4]; z6=z4*z2; - q1 = one+t*qS[1]; - q2 = qS[2]+t*qS[3]; - p = p1 + z2*p2 + z4*p3 + z6*pS[5]; - q = q1 + z2*q2 + z4*qS[4]; -#endif - s = __ieee754_sqrt(t); - if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ - w = p/q; - t = pio2_hi-(2.0*(s+s*w)-pio2_lo); - } else { - w = s; - SET_LOW_WORD(w,0); - c = (t-w*w)/(s+w); - r = p/q; - p = 2.0*s*r-(pio2_lo-2.0*c); - q = pio4_hi-2.0*w; - t = pio4_hi-(p-q); + } + } + } /* else if (k < 0x3fc00000) */ + /*---------------------- 0.125 <= |x| < 0.5 --------------------*/ + else + if (k < 0x3fe00000) { + if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15); + else n = 11*((k&0x000fffff)>>14)+352; + if (m>0) xx = x - asncs.x[n]; + else xx = -x - asncs.x[n]; + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*asncs.x[n+6]))))+asncs.x[n+7]; + t+=p; + y = (m>0)?(hp0.x-asncs.x[n+8]):(hp0.x+asncs.x[n+8]); + t = (m>0)?(hp1.x-t):(hp1.x+t); + res = y+t; + if (res == res+1.02*((y-res)+t)) return res; + else { + r=asncs.x[n+8]+xx*asncs.x[n+9]; + t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]); + if (m>0) + {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; } + else + {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); } + res = p+t; + cor = (p-res)+t; + if (res == (res+1.0002*cor)) return res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __docos(res,z,w); + z=(w[0]-x)+w[1]; + if (z>1.0e-27) return max(res,res1); + else if (z<-1.0e-27) return min(res,res1); + else return cos32(x,res,res1); + } + } + } /* else if (k < 0x3fe00000) */ + + /*--------------------------- 0.5 <= |x| < 0.75 ---------------------*/ + else + if (k < 0x3fe80000) { + n = 1056+((k&0x000fe000)>>11)*3; + if (m>0) {xx = x - asncs.x[n]; eps=1.04; } + else {xx = -x - asncs.x[n]; eps=1.02; } + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+ + xx*asncs.x[n+7])))))+asncs.x[n+8]; + t+=p; + y = (m>0)?(hp0.x-asncs.x[n+9]):(hp0.x+asncs.x[n+9]); + t = (m>0)?(hp1.x-t):(hp1.x+t); + res = y+t; + if (res == res+eps*((y-res)+t)) return res; + else { + r=asncs.x[n+9]+xx*asncs.x[n+10]; + t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]); + if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0004; } + else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0002; } + res = p+t; + cor = (p-res)+t; + if (res == (res+eps*cor)) return res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __docos(res,z,w); + z=(w[0]-x)+w[1]; + if (z>1.0e-27) return max(res,res1); + else if (z<-1.0e-27) return min(res,res1); + else return cos32(x,res,res1); + } + } + } /* else if (k < 0x3fe80000) */ + +/*------------------------- 0.75 <= |x| < 0.921875 -------------*/ + else + if (k < 0x3fed8000) { + n = 992+((k&0x000fe000)>>13)*13; + if (m>0) {xx = x - asncs.x[n]; eps = 1.04; } + else {xx = -x - asncs.x[n]; eps = 1.01; } + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+ + xx*asncs.x[n+8]))))))+asncs.x[n+9]; + t+=p; + y = (m>0)?(hp0.x-asncs.x[n+10]):(hp0.x+asncs.x[n+10]); + t = (m>0)?(hp1.x-t):(hp1.x+t); + res = y+t; + if (res == res+eps*((y-res)+t)) return res; + else { + r=asncs.x[n+10]+xx*asncs.x[n+11]; + t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]); + if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0032; } + else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0008; } + res = p+t; + cor = (p-res)+t; + if (res == (res+eps*cor)) return res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __docos(res,z,w); + z=(w[0]-x)+w[1]; + if (z>1.0e-27) return max(res,res1); + else if (z<-1.0e-27) return min(res,res1); + else return cos32(x,res,res1); + } + } + } /* else if (k < 0x3fed8000) */ + +/*-------------------0.921875 <= |x| < 0.953125 ------------------*/ + else + if (k < 0x3fee8000) { + n = 884+((k&0x000fe000)>>13)*14; + if (m>0) {xx = x - asncs.x[n]; eps=1.04; } + else {xx = -x - asncs.x[n]; eps =1.005; } + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*(asncs.x[n+6] + +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ + xx*asncs.x[n+9])))))))+asncs.x[n+10]; + t+=p; + y = (m>0)?(hp0.x-asncs.x[n+11]):(hp0.x+asncs.x[n+11]); + t = (m>0)?(hp1.x-t):(hp1.x+t); + res = y+t; + if (res == res+eps*((y-res)+t)) return res; + else { + r=asncs.x[n+11]+xx*asncs.x[n+12]; + t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]); + if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; } + else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; } + res = p+t; + cor = (p-res)+t; + if (res == (res+eps*cor)) return res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __docos(res,z,w); + z=(w[0]-x)+w[1]; + if (z>1.0e-27) return max(res,res1); + else if (z<-1.0e-27) return min(res,res1); + else return cos32(x,res,res1); + } + } + } /* else if (k < 0x3fee8000) */ + + /*--------------------0.953125 <= |x| < 0.96875 ----------------*/ + else + if (k < 0x3fef0000) { + n = 768+((k&0x000fe000)>>13)*15; + if (m>0) {xx = x - asncs.x[n]; eps=1.04; } + else {xx = -x - asncs.x[n]; eps=1.005;} + t = asncs.x[n+1]*xx; + p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ + xx*(asncs.x[n+5]+xx*(asncs.x[n+6] + +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+xx*(asncs.x[n+9]+ + xx*asncs.x[n+10]))))))))+asncs.x[n+11]; + t+=p; + y = (m>0)?(hp0.x-asncs.x[n+12]):(hp0.x+asncs.x[n+12]); + t = (m>0)?(hp1.x-t):(hp1.x+t); + res = y+t; + if (res == res+eps*((y-res)+t)) return res; + else { + r=asncs.x[n+12]+xx*asncs.x[n+13]; + t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]); + if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; } + else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; } + res = p+t; + cor = (p-res)+t; + if (res == (res+eps*cor)) return res; + else { + res1=res+1.1*cor; + z=0.5*(res1-res); + __docos(res,z,w); + z=(w[0]-x)+w[1]; + if (z>1.0e-27) return max(res,res1); + else if (z<-1.0e-27) return min(res,res1); + else return cos32(x,res,res1); + } + } + } /* else if (k < 0x3fef0000) */ + /*-----------------0.96875 <= |x| < 1 ---------------------------*/ + + else + if (k<0x3ff00000) { + z = 0.5*((m>0)?(1.0-x):(1.0+x)); + v.x=z; + k=v.i[HIGH_HALF]; + t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)]; + r=1.0-t*t*z; + t = t*(rt0+r*(rt1+r*(rt2+r*rt3))); + c=t*z; + t=c*(1.5-0.5*t*c); + y = (t27*c+c)-t27*c; + cc = (z-y*y)/(t+y); + p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z; + if (m<0) { + cor = (hp1.x - cc)-(y+cc)*p; + res1 = hp0.x - y; + res =res1 + cor; + if (res == res+1.002*((res1-res)+cor)) return (res+res); + else { + c=y+cc; + cc=(y-c)+cc; + __doasin(c,cc,w); + res1=hp0.x-w[0]; + cor=((hp0.x-res1)-w[0])+(hp1.x-w[1]); + res = res1+cor; + cor = (res1-res)+cor; + if (res==(res+1.000001*cor)) return (res+res); + else { + res=res+res; + res1=res+1.2*cor; + return cos32(x,res,res1); } - if(hx>0) return t; else return -t; + } + } + else { + cor = cc+p*(y+cc); + res = y + cor; + if (res == res+1.03*((y-res)+cor)) return (res+res); + else { + c=y+cc; + cc=(y-c)+cc; + __doasin(c,cc,w); + res = w[0]; + cor=w[1]; + if (res==(res+1.000001*cor)) return (res+res); + else { + res=res+res; + res1=res+1.2*cor; + return cos32(x,res,res1); + } + } + } + } /* else if (k < 0x3ff00000) */ + + /*---------------------------- |x|>=1 -----------------------*/ + else + if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?0:2.0*hp0.x; + else { + u.i[HIGH_HALF]=0x7ff00000; + v.i[HIGH_HALF]=0x7ff00000; + u.i[LOW_HALF]=0; + v.i[LOW_HALF]=0; + return u.x/v.x; + } } |