aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/e_acosh.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/e_acosh.c')
-rw-r--r--sysdeps/ieee754/dbl-64/e_acosh.c69
1 files changed, 0 insertions, 69 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_acosh.c b/sysdeps/ieee754/dbl-64/e_acosh.c
deleted file mode 100644
index c1f3590f75..0000000000
--- a/sysdeps/ieee754/dbl-64/e_acosh.c
+++ /dev/null
@@ -1,69 +0,0 @@
-/* @(#)e_acosh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_acosh(x)
- * Method :
- * Based on
- * acosh(x) = log [ x + sqrt(x*x-1) ]
- * we have
- * acosh(x) := log(x)+ln2, if x is large; else
- * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- * acosh(x) is NaN with signal if x<1.
- * acosh(NaN) is NaN without signal.
- */
-
-#include <math.h>
-#include <math_private.h>
-
-static const double
- one = 1.0,
- ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
-
-double
-__ieee754_acosh (double x)
-{
- double t;
- int32_t hx;
- u_int32_t lx;
- EXTRACT_WORDS (hx, lx, x);
- if (hx < 0x3ff00000) /* x < 1 */
- {
- return (x - x) / (x - x);
- }
- else if (hx >= 0x41b00000) /* x > 2**28 */
- {
- if (hx >= 0x7ff00000) /* x is inf of NaN */
- {
- return x + x;
- }
- else
- return __ieee754_log (x) + ln2; /* acosh(huge)=log(2x) */
- }
- else if (((hx - 0x3ff00000) | lx) == 0)
- {
- return 0.0; /* acosh(1) = 0 */
- }
- else if (hx > 0x40000000) /* 2**28 > x > 2 */
- {
- t = x * x;
- return __ieee754_log (2.0 * x - one / (x + __ieee754_sqrt (t - one)));
- }
- else /* 1<x<2 */
- {
- t = x - one;
- return __log1p (t + __ieee754_sqrt (2.0 * t + t * t));
- }
-}
-strong_alias (__ieee754_acosh, __acosh_finite)