aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/dla.h
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/dla.h')
-rw-r--r--sysdeps/ieee754/dbl-64/dla.h183
1 files changed, 0 insertions, 183 deletions
diff --git a/sysdeps/ieee754/dbl-64/dla.h b/sysdeps/ieee754/dbl-64/dla.h
deleted file mode 100644
index 88e8ffb1ca..0000000000
--- a/sysdeps/ieee754/dbl-64/dla.h
+++ /dev/null
@@ -1,183 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * Written by International Business Machines Corp.
- * Copyright (C) 2001-2017 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#include <math.h>
-
-/***********************************************************************/
-/*MODULE_NAME: dla.h */
-/* */
-/* This file holds C language macros for 'Double Length Floating Point */
-/* Arithmetic'. The macros are based on the paper: */
-/* T.J.Dekker, "A floating-point Technique for extending the */
-/* Available Precision", Number. Math. 18, 224-242 (1971). */
-/* A Double-Length number is defined by a pair (r,s), of IEEE double */
-/* precision floating point numbers that satisfy, */
-/* */
-/* abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)). */
-/* */
-/* The computer arithmetic assumed is IEEE double precision in */
-/* round to nearest mode. All variables in the macros must be of type */
-/* IEEE double. */
-/***********************************************************************/
-
-/* CN = 1+2**27 = '41a0000002000000' IEEE double format. Use it to split a
- double for better accuracy. */
-#define CN 134217729.0
-
-
-/* Exact addition of two single-length floating point numbers, Dekker. */
-/* The macro produces a double-length number (z,zz) that satisfies */
-/* z+zz = x+y exactly. */
-
-#define EADD(x,y,z,zz) \
- z=(x)+(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
-
-
-/* Exact subtraction of two single-length floating point numbers, Dekker. */
-/* The macro produces a double-length number (z,zz) that satisfies */
-/* z+zz = x-y exactly. */
-
-#define ESUB(x,y,z,zz) \
- z=(x)-(y); zz=(fabs(x)>fabs(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));
-
-
-#ifdef __FP_FAST_FMA
-# define DLA_FMS(x, y, z) __builtin_fma (x, y, -(z))
-#endif
-
-/* Exact multiplication of two single-length floating point numbers, */
-/* Veltkamp. The macro produces a double-length number (z,zz) that */
-/* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
-/* storage variables of type double. */
-
-#ifdef DLA_FMS
-# define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
- z = x * y; zz = DLA_FMS (x, y, z);
-#else
-# define EMULV(x, y, z, zz, p, hx, tx, hy, ty) \
- p = CN * (x); hx = ((x) - p) + p; tx = (x) - hx; \
- p = CN * (y); hy = ((y) - p) + p; ty = (y) - hy; \
- z = (x) * (y); zz = (((hx * hy - z) + hx * ty) + tx * hy) + tx * ty;
-#endif
-
-
-/* Exact multiplication of two single-length floating point numbers, Dekker. */
-/* The macro produces a nearly double-length number (z,zz) (see Dekker) */
-/* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
-/* storage variables of type double. */
-
-#ifdef DLA_FMS
-# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
- EMULV(x,y,z,zz,p,hx,tx,hy,ty)
-#else
-# define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
- p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
- p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
- p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
-#endif
-
-
-/* Double-length addition, Dekker. The macro produces a double-length */
-/* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
-/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
-/* are assumed to be double-length numbers. r,s are temporary */
-/* storage variables of type double. */
-
-#define ADD2(x, xx, y, yy, z, zz, r, s) \
- r = (x) + (y); s = (fabs (x) > fabs (y)) ? \
- (((((x) - r) + (y)) + (yy)) + (xx)) : \
- (((((y) - r) + (x)) + (xx)) + (yy)); \
- z = r + s; zz = (r - z) + s;
-
-
-/* Double-length subtraction, Dekker. The macro produces a double-length */
-/* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
-/* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
-/* are assumed to be double-length numbers. r,s are temporary */
-/* storage variables of type double. */
-
-#define SUB2(x, xx, y, yy, z, zz, r, s) \
- r = (x) - (y); s = (fabs (x) > fabs (y)) ? \
- (((((x) - r) - (y)) - (yy)) + (xx)) : \
- ((((x) - ((y) + r)) + (xx)) - (yy)); \
- z = r + s; zz = (r - z) + s;
-
-
-/* Double-length multiplication, Dekker. The macro produces a double-length */
-/* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
-/* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
-/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
-/* temporary storage variables of type double. */
-
-#define MUL2(x, xx, y, yy, z, zz, p, hx, tx, hy, ty, q, c, cc) \
- MUL12 (x, y, c, cc, p, hx, tx, hy, ty, q) \
- cc = ((x) * (yy) + (xx) * (y)) + cc; z = c + cc; zz = (c - z) + cc;
-
-
-/* Double-length division, Dekker. The macro produces a double-length */
-/* number (z,zz) which satisfies approximately z+zz = (x+xx)/(y+yy). */
-/* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy) */
-/* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu */
-/* are temporary storage variables of type double. */
-
-#define DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu) \
- c=(x)/(y); MUL12(c,y,u,uu,p,hx,tx,hy,ty,q) \
- cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y); z=c+cc; zz=(c-z)+cc;
-
-
-/* Double-length addition, slower but more accurate than ADD2. */
-/* The macro produces a double-length */
-/* number (z,zz) which satisfies approximately z+zz = (x+xx)+(y+yy). */
-/* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy) */
-/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
-/* are temporary storage variables of type double. */
-
-#define ADD2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
- r = (x) + (y); \
- if (fabs (x) > fabs (y)) { rr = ((x) - r) + (y); s = (rr + (yy)) + (xx); } \
- else { rr = ((y) - r) + (x); s = (rr + (xx)) + (yy); } \
- if (rr != 0.0) { \
- z = r + s; zz = (r - z) + s; } \
- else { \
- ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) + (yy)) : (((yy) - s) + (xx));\
- u = r + s; \
- uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \
- w = uu + ss; z = u + w; \
- zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); }
-
-
-/* Double-length subtraction, slower but more accurate than SUB2. */
-/* The macro produces a double-length */
-/* number (z,zz) which satisfies approximately z+zz = (x+xx)-(y+yy). */
-/* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy) */
-/* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w */
-/* are temporary storage variables of type double. */
-
-#define SUB2A(x, xx, y, yy, z, zz, r, rr, s, ss, u, uu, w) \
- r = (x) - (y); \
- if (fabs (x) > fabs (y)) { rr = ((x) - r) - (y); s = (rr - (yy)) + (xx); } \
- else { rr = (x) - ((y) + r); s = (rr + (xx)) - (yy); } \
- if (rr != 0.0) { \
- z = r + s; zz = (r - z) + s; } \
- else { \
- ss = (fabs (xx) > fabs (yy)) ? (((xx) - s) - (yy)) : ((xx) - ((yy) + s)); \
- u = r + s; \
- uu = (fabs (r) > fabs (s)) ? ((r - u) + s) : ((s - u) + r); \
- w = uu + ss; z = u + w; \
- zz = (fabs (u) > fabs (w)) ? ((u - z) + w) : ((w - z) + u); }