diff options
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r-- | sysdeps/ia64/fpu/libm_sincosf.S | 745 |
1 files changed, 0 insertions, 745 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S deleted file mode 100644 index cf23356ef4..0000000000 --- a/sysdeps/ia64/fpu/libm_sincosf.S +++ /dev/null @@ -1,745 +0,0 @@ -.file "libm_sincosf.s" - - -// Copyright (c) 2002 - 2005, Intel Corporation -// All rights reserved. -// -// Contributed 2002 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -// History -//============================================================== -// 02/01/02 Initial version -// 02/18/02 Large arguments processing routine is excluded. -// External interface entry points are added -// 02/26/02 Added temporary return of results in r8, r9 -// 03/13/02 Corrected restore of predicate registers -// 03/19/02 Added stack unwind around call to __libm_cisf_large -// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16) -// 02/10/03 Reordered header: .section, .global, .proc, .align -// 02/11/04 cisf is moved to the separate file. -// 03/31/05 Reformatted delimiters between data tables - -// API -//============================================================== -// 1) void sincosf(float, float*s, float*c) -// 2) __libm_sincosf - internal LIBM function, that accepts -// argument in f8 and returns cosine through f8, sine through f9 - -// -// Overview of operation -//============================================================== -// -// Step 1 -// ====== -// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 -// divide x by pi/2^k. -// Multiply by 2^k/pi. -// nfloat = Round result to integer (round-to-nearest) -// -// r = x - nfloat * pi/2^k -// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy. -// pi/2^k is stored as two numbers that when added make pi/2^k. -// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) -// HIGH part is rounded to zero, LOW - to nearest -// -// x = (nfloat * pi/2^k) + r -// r is small enough that we can use a polynomial approximation -// and is referred to as the reduced argument. -// -// Step 3 -// ====== -// Take the unreduced part and remove the multiples of 2pi. -// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits -// -// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) -// N * 2^(k+1) -// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N2pi + M * pi/2^k -// -// -// Sin(x) = Sin((nfloat * pi/2^k) + r) -// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) -// -// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) -// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) -// = Sin(Mpi/2^k) -// -// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) -// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) -// = Cos(Mpi/2^k) -// -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// -// Step 4 -// ====== -// 0 <= M < 2^(k+1) -// There are 2^(k+1) Sin entries in a table. -// There are 2^(k+1) Cos entries in a table. -// -// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. -// -// -// Step 5 -// ====== -// Calculate Cos(r) and Sin(r) by polynomial approximation. -// -// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos -// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin -// -// and the coefficients q1, q2 and p1, p2 are stored in a table -// -// -// Calculate -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// as follows -// -// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) -// rsq = r*r -// -// -// P = p1 + r^2p2 -// Q = q1 + r^2q2 -// -// rcub = r * rsq -// Sin(r) = r + rcub * P -// = r + r^3p1 + r^5p2 = Sin(r) -// -// P = r + rcub * P -// -// Answer = S[m] Cos(r) + C[m] P -// -// Cos(r) = 1 + rsq Q -// Cos(r) = 1 + r^2 Q -// Cos(r) = 1 + r^2 (q1 + r^2q2) -// Cos(r) = 1 + r^2q1 + r^4q2 -// -// S[m] Cos(r) = S[m](1 + rsq Q) -// S[m] Cos(r) = S[m] + S[m] rsq Q -// S[m] Cos(r) = S[m] + s_rsq Q -// Q = S[m] + s_rsq Q -// -// Then, -// -// Answer = Q + C[m] P - - -// Registers used -//============================================================== -// general input registers: -// r14 -> r19 -// r32 -> r49 - -// predicate registers used: -// p6 -> p14 - -// floating-point registers used -// f9 -> f15 -// f32 -> f100 - -// Assembly macros -//============================================================== - -cisf_Arg = f8 - -cisf_Sin_res = f9 -cisf_Cos_res = f8 - - -cisf_NORM_f8 = f10 -cisf_W = f11 -cisf_int_Nfloat = f12 -cisf_Nfloat = f13 - -cisf_r = f14 -cisf_r_exact = f68 -cisf_rsq = f15 -cisf_rcub = f32 - -cisf_Inv_Pi_by_16 = f33 -cisf_Pi_by_16_hi = f34 -cisf_Pi_by_16_lo = f35 - -cisf_Inv_Pi_by_64 = f36 -cisf_Pi_by_64_hi = f37 -cisf_Pi_by_64_lo = f38 - - -cisf_P1 = f39 -cisf_Q1 = f40 -cisf_P2 = f41 -cisf_Q2 = f42 -cisf_P3 = f43 -cisf_Q3 = f44 -cisf_P4 = f45 -cisf_Q4 = f46 - -cisf_P_temp1 = f47 -cisf_P_temp2 = f48 - -cisf_Q_temp1 = f49 -cisf_Q_temp2 = f50 - -cisf_P = f51 - -cisf_SIG_INV_PI_BY_16_2TO61 = f52 -cisf_RSHF_2TO61 = f53 -cisf_RSHF = f54 -cisf_2TOM61 = f55 -cisf_NFLOAT = f56 -cisf_W_2TO61_RSH = f57 - -cisf_tmp = f58 - -cisf_Sm_sin = f59 -cisf_Cm_sin = f60 - -cisf_Sm_cos = f61 -cisf_Cm_cos = f62 - -cisf_srsq_sin = f63 -cisf_srsq_cos = f64 - -cisf_Q_sin = f65 -cisf_Q_cos = f66 -cisf_Q = f67 - -///////////////////////////////////////////////////////////// - -cisf_pResSin = r33 -cisf_pResCos = r34 - -cisf_exp_limit = r35 -cisf_r_signexp = r36 -cisf_AD_beta_table = r37 -cisf_r_sincos = r38 - -cisf_r_exp = r39 -cisf_r_17_ones = r40 - -cisf_GR_sig_inv_pi_by_16 = r14 -cisf_GR_rshf_2to61 = r15 -cisf_GR_rshf = r16 -cisf_GR_exp_2tom61 = r17 -cisf_GR_n = r18 - -cisf_GR_n_sin = r19 -cisf_GR_m_sin = r41 -cisf_GR_32m_sin = r41 - -cisf_GR_n_cos = r42 -cisf_GR_m_cos = r43 -cisf_GR_32m_cos = r43 - -cisf_AD_2_sin = r44 -cisf_AD_2_cos = r45 - -cisf_gr_tmp = r46 -GR_SAVE_B0 = r47 -GR_SAVE_GP = r48 -rB0_SAVED = r49 -GR_SAVE_PFS = r50 -GR_SAVE_PR = r51 -cisf_AD_1 = r52 - -RODATA - -.align 16 -// Pi/16 parts -LOCAL_OBJECT_START(double_cisf_pi) - data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part - data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part -LOCAL_OBJECT_END(double_cisf_pi) - -// Coefficients for polynomials -LOCAL_OBJECT_START(double_cisf_pq_k4) - data8 0x3F810FABB668E9A2 // P2 - data8 0x3FA552E3D6DE75C9 // Q2 - data8 0xBFC555554447BC7F // P1 - data8 0xBFDFFFFFC447610A // Q1 -LOCAL_OBJECT_END(double_cisf_pq_k4) - -// Sincos table (S[m], C[m]) -LOCAL_OBJECT_START(double_sin_cos_beta_k4) - data8 0x0000000000000000 // sin ( 0 Pi / 16 ) - data8 0x3FF0000000000000 // cos ( 0 Pi / 16 ) -// - data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 ) - data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 ) -// - data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 ) - data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 ) -// - data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 ) - data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 ) -// - data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 ) - data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 ) -// - data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 ) - data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 ) -// - data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 ) - data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 ) -// - data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 ) - data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 ) -// - data8 0x3FF0000000000000 // sin ( 8 Pi / 16 ) - data8 0x0000000000000000 // cos ( 8 Pi / 16 ) -// - data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 ) - data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 ) -// - data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 ) - data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 ) -// - data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 ) - data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 ) -// - data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 ) - data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 ) -// - data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 ) - data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 ) -// - data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 ) - data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 ) -// - data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 ) - data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 ) -// - data8 0x0000000000000000 // sin ( 16 Pi / 16 ) - data8 0xBFF0000000000000 // cos ( 16 Pi / 16 ) -// - data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 ) - data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 ) -// - data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 ) - data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 ) -// - data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 ) - data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 ) -// - data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 ) - data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 ) -// - data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 ) - data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 ) -// - data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 ) - data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 ) -// - data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 ) - data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 ) -// - data8 0xBFF0000000000000 // sin ( 24 Pi / 16 ) - data8 0x0000000000000000 // cos ( 24 Pi / 16 ) -// - data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 ) - data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 ) -// - data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 ) - data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 ) -// - data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 ) - data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 ) -// - data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 ) - data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 ) -// - data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 ) - data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 ) -// - data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 ) - data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 ) -// - data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 ) - data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 ) -// - data8 0x0000000000000000 // sin ( 32 Pi / 16 ) - data8 0x3FF0000000000000 // cos ( 32 Pi / 16 ) -LOCAL_OBJECT_END(double_sin_cos_beta_k4) - -.section .text - -GLOBAL_IEEE754_ENTRY(sincosf) -// cis_GR_sig_inv_pi_by_16 = significand of 16/pi -{ .mlx - alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0 - movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd - -} -// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2) -{ .mlx - addl cisf_AD_1 = @ltoff(double_cisf_pi), gp - movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) -};; - -{ .mfi - ld8 cisf_AD_1 = [cisf_AD_1] - fnorm.s1 cisf_NORM_f8 = cisf_Arg - cmp.eq p13, p14 = r0, r0 // p13 set for sincos -} -// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61 -{ .mib - mov cisf_GR_exp_2tom61 = 0xffff-61 - nop.i 0 - br.cond.sptk _CISF_COMMON -};; -GLOBAL_IEEE754_END(sincosf) - -GLOBAL_LIBM_ENTRY(__libm_sincosf) -{ .mlx -// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi - alloc GR_SAVE_PFS = ar.pfs,0,21,0,0 - movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A -} -// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2) -{ .mlx - addl cisf_AD_1 = @ltoff(double_cisf_pi), gp - movl cisf_GR_rshf_2to61 = 0x47b8000000000000 -};; - -// p14 set for __libm_sincos and cis -{ .mfi - ld8 cisf_AD_1 = [cisf_AD_1] - fnorm.s1 cisf_NORM_f8 = cisf_Arg - cmp.eq p14, p13 = r0, r0 -} -// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61 -{ .mib - mov cisf_GR_exp_2tom61 = 0xffff-61 - nop.i 0 - nop.b 0 -};; - -_CISF_COMMON: -// Form two constants we need -// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand -// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand -// fcmp used to set denormal, and invalid on snans -{ .mfi - setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16 - fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan - addl cisf_gr_tmp = -1, r0 -} -// cisf_GR_rshf = 1.1000 2^63 for right shift -{ .mlx - setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61 - movl cisf_GR_rshf = 0x43e8000000000000 -};; - -// Form another constant -// 2^-61 for scaling Nfloat -// 0x10017 is register_bias + 24. -// So if f8 >= 2^24, go to large args routine -{ .mmi - getf.exp cisf_r_signexp = cisf_Arg - setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61 - mov cisf_exp_limit = 0x10017 -};; - -// Load the two pieces of pi/16 -// Form another constant -// 1.1000...000 * 2^63, the right shift constant -{ .mmb - ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16 - setf.d cisf_RSHF = cisf_GR_rshf -(p6) br.cond.spnt _CISF_SPECIAL_ARGS -};; - -{ .mmi - ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16 - setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set - nop.i 0 -};; - -// Start loading P, Q coefficients -{ .mmi - ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16 - nop.m 0 - dep.z cisf_r_exp = cisf_r_signexp, 0, 17 -};; - -// p10 is true if we must call routines to handle larger arguments -// p10 is true if f8 exp is >= 0x10017 -{ .mmb - ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16 - cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit -(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path -};; - -// cisf_W = x * cisf_Inv_Pi_by_16 -// Multiply x by scaled 16/pi and add large const to shift integer part of W to -// rightmost bits of significand -{ .mfi - nop.m 0 - fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61 - nop.i 0 -};; - -// cisf_NFLOAT = Round_Int_Nearest(cisf_W) -{ .mfi - nop.m 0 - fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF - nop.i 0 -};; - -// N = (int)cisf_int_Nfloat -{ .mfi - getf.sig cisf_GR_n = cisf_W_2TO61_RSH - nop.f 0 - nop.i 0 -};; - -// Add 2^(k-1) (which is in cisf_r_sincos) to N -// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x -// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo -{ .mfi - add cisf_GR_n_cos = 0x8, cisf_GR_n - fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8 - nop.i 0 -};; - -//Get M (least k+1 bits of N) -{ .mmi - and cisf_GR_m_sin = 0x1f,cisf_GR_n - and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos - nop.i 0 -};; - -{ .mmi - shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1 - shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1 - nop.i 0 -};; - -// den. input to set uflow -{ .mmf - ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin] - ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos] - fclass.m.unc p10,p0 = cisf_Arg,0x0b -};; - -{ .mfi - nop.m 0 - fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2 - nop.i 0 -} -{ .mfi - nop.m 0 - fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag - nop.i 0 -};; - -{ .mmf - nop.m 0 - nop.m 0 - fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r -};; - -{ .mfi - nop.m 0 - fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1 - nop.i 0 -};; - -{ .mfi - nop.m 0 - fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3 - nop.i 0 -};; - -{ .mfi - nop.m 0 - fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq - nop.i 0 -} -{ .mfi - nop.m 0 - fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact - nop.i 0 -};; - -{ .mfi - nop.m 0 - fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos - nop.i 0 -};; - -// If den. arg, force underflow to be set -{ .mfi - nop.m 0 -(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg - nop.i 0 -};; - -//Final sin -{ .mfi - nop.m 0 - fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin - nop.i 0 -} -//Final cos -{ .mfb - nop.m 0 - fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos -(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path -};; - -{ .mmb - stfs [cisf_pResSin] = cisf_Sin_res - stfs [cisf_pResCos] = cisf_Cos_res - br.ret.sptk b0 // common exit for sincos main path -};; - -_CISF_SPECIAL_ARGS: -// sinf(+/-0) = +/-0 -// sinf(Inf) = NaN -// sinf(NaN) = NaN -{ .mfi - nop.m 999 - fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf) - nop.i 999 -};; - -// cosf(+/-0) = 1.0 -// cosf(Inf) = NaN -// cosf(NaN) = NaN -{ .mfb - nop.m 999 - fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf) -(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path -};; - -{ .mmb - stfs [cisf_pResSin] = cisf_Sin_res - stfs [cisf_pResCos] = cisf_Cos_res - br.ret.sptk b0 // special exit for sincos main path -};; - - // exit for sincos - // NOTE! r8 and r9 used only because of compiler issue - // connected with float point complex function arguments pass - // After fix of this issue this operations can be deleted -_CISF_RETURN: -{ .mmb - getf.s r8 = cisf_Cos_res - getf.s r9 = cisf_Sin_res - br.ret.sptk b0 // exit for sincos -};; -GLOBAL_LIBM_END(__libm_sincosf) - -//// |x| > 2^24 path /////// -.proc _CISF_LARGE_ARGS -_CISF_LARGE_ARGS: -.prologue -{ .mfi - nop.m 0 - nop.f 0 -.save ar.pfs, GR_SAVE_PFS - mov GR_SAVE_PFS = ar.pfs -};; - -{ .mfi - mov GR_SAVE_GP = gp - nop.f 0 -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0 = b0 -};; - -.body -// Call of huge arguments sincos -{ .mib - nop.m 0 - mov GR_SAVE_PR = pr - br.call.sptk b0 = __libm_sincos_large -};; - -{ .mfi - mov gp = GR_SAVE_GP - nop.f 0 - mov pr = GR_SAVE_PR, 0x1fffe -} -;; - -{ .mfi - nop.m 0 - nop.f 0 - mov b0 = GR_SAVE_B0 -} -;; - -{ .mfi - nop.m 0 - fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0 - mov ar.pfs = GR_SAVE_PFS -} -// exit for |x| > 2^24 path (__libm_sincos and cis) -{ .mfb - nop.m 0 - fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0 -(p14) br.cond.sptk _CISF_RETURN -};; - -{ .mmb - stfs [cisf_pResSin] = cisf_Sin_res - stfs [cisf_pResCos] = cisf_Cos_res - br.ret.sptk b0 // exit for sincos |x| > 2^24 path -};; - -.endp _CISF_LARGE_ARGS - -.type __libm_sincos_large#,@function -.global __libm_sincos_large# - |