aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/libm_sincosf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincosf.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincosf.S745
1 files changed, 0 insertions, 745 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincosf.S b/sysdeps/ia64/fpu/libm_sincosf.S
deleted file mode 100644
index cf23356ef4..0000000000
--- a/sysdeps/ia64/fpu/libm_sincosf.S
+++ /dev/null
@@ -1,745 +0,0 @@
-.file "libm_sincosf.s"
-
-
-// Copyright (c) 2002 - 2005, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/01/02 Initial version
-// 02/18/02 Large arguments processing routine is excluded.
-// External interface entry points are added
-// 02/26/02 Added temporary return of results in r8, r9
-// 03/13/02 Corrected restore of predicate registers
-// 03/19/02 Added stack unwind around call to __libm_cisf_large
-// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 02/11/04 cisf is moved to the separate file.
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// 1) void sincosf(float, float*s, float*c)
-// 2) __libm_sincosf - internal LIBM function, that accepts
-// argument in f8 and returns cosine through f8, sine through f9
-
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
-// divide x by pi/2^k.
-// Multiply by 2^k/pi.
-// nfloat = Round result to integer (round-to-nearest)
-//
-// r = x - nfloat * pi/2^k
-// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
-// pi/2^k is stored as two numbers that when added make pi/2^k.
-// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-// HIGH part is rounded to zero, LOW - to nearest
-//
-// x = (nfloat * pi/2^k) + r
-// r is small enough that we can use a polynomial approximation
-// and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-// N * 2^(k+1)
-// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-// nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-// = Sin(Mpi/2^k)
-//
-// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-// = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
-// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
-//
-// and the coefficients q1, q2 and p1, p2 are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-// rsq = r*r
-//
-//
-// P = p1 + r^2p2
-// Q = q1 + r^2q2
-//
-// rcub = r * rsq
-// Sin(r) = r + rcub * P
-// = r + r^3p1 + r^5p2 = Sin(r)
-//
-// P = r + rcub * P
-//
-// Answer = S[m] Cos(r) + C[m] P
-//
-// Cos(r) = 1 + rsq Q
-// Cos(r) = 1 + r^2 Q
-// Cos(r) = 1 + r^2 (q1 + r^2q2)
-// Cos(r) = 1 + r^2q1 + r^4q2
-//
-// S[m] Cos(r) = S[m](1 + rsq Q)
-// S[m] Cos(r) = S[m] + S[m] rsq Q
-// S[m] Cos(r) = S[m] + s_rsq Q
-// Q = S[m] + s_rsq Q
-//
-// Then,
-//
-// Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r19
-// r32 -> r49
-
-// predicate registers used:
-// p6 -> p14
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f100
-
-// Assembly macros
-//==============================================================
-
-cisf_Arg = f8
-
-cisf_Sin_res = f9
-cisf_Cos_res = f8
-
-
-cisf_NORM_f8 = f10
-cisf_W = f11
-cisf_int_Nfloat = f12
-cisf_Nfloat = f13
-
-cisf_r = f14
-cisf_r_exact = f68
-cisf_rsq = f15
-cisf_rcub = f32
-
-cisf_Inv_Pi_by_16 = f33
-cisf_Pi_by_16_hi = f34
-cisf_Pi_by_16_lo = f35
-
-cisf_Inv_Pi_by_64 = f36
-cisf_Pi_by_64_hi = f37
-cisf_Pi_by_64_lo = f38
-
-
-cisf_P1 = f39
-cisf_Q1 = f40
-cisf_P2 = f41
-cisf_Q2 = f42
-cisf_P3 = f43
-cisf_Q3 = f44
-cisf_P4 = f45
-cisf_Q4 = f46
-
-cisf_P_temp1 = f47
-cisf_P_temp2 = f48
-
-cisf_Q_temp1 = f49
-cisf_Q_temp2 = f50
-
-cisf_P = f51
-
-cisf_SIG_INV_PI_BY_16_2TO61 = f52
-cisf_RSHF_2TO61 = f53
-cisf_RSHF = f54
-cisf_2TOM61 = f55
-cisf_NFLOAT = f56
-cisf_W_2TO61_RSH = f57
-
-cisf_tmp = f58
-
-cisf_Sm_sin = f59
-cisf_Cm_sin = f60
-
-cisf_Sm_cos = f61
-cisf_Cm_cos = f62
-
-cisf_srsq_sin = f63
-cisf_srsq_cos = f64
-
-cisf_Q_sin = f65
-cisf_Q_cos = f66
-cisf_Q = f67
-
-/////////////////////////////////////////////////////////////
-
-cisf_pResSin = r33
-cisf_pResCos = r34
-
-cisf_exp_limit = r35
-cisf_r_signexp = r36
-cisf_AD_beta_table = r37
-cisf_r_sincos = r38
-
-cisf_r_exp = r39
-cisf_r_17_ones = r40
-
-cisf_GR_sig_inv_pi_by_16 = r14
-cisf_GR_rshf_2to61 = r15
-cisf_GR_rshf = r16
-cisf_GR_exp_2tom61 = r17
-cisf_GR_n = r18
-
-cisf_GR_n_sin = r19
-cisf_GR_m_sin = r41
-cisf_GR_32m_sin = r41
-
-cisf_GR_n_cos = r42
-cisf_GR_m_cos = r43
-cisf_GR_32m_cos = r43
-
-cisf_AD_2_sin = r44
-cisf_AD_2_cos = r45
-
-cisf_gr_tmp = r46
-GR_SAVE_B0 = r47
-GR_SAVE_GP = r48
-rB0_SAVED = r49
-GR_SAVE_PFS = r50
-GR_SAVE_PR = r51
-cisf_AD_1 = r52
-
-RODATA
-
-.align 16
-// Pi/16 parts
-LOCAL_OBJECT_START(double_cisf_pi)
- data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
- data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-LOCAL_OBJECT_END(double_cisf_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_cisf_pq_k4)
- data8 0x3F810FABB668E9A2 // P2
- data8 0x3FA552E3D6DE75C9 // Q2
- data8 0xBFC555554447BC7F // P1
- data8 0xBFDFFFFFC447610A // Q1
-LOCAL_OBJECT_END(double_cisf_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
- data8 0x0000000000000000 // sin ( 0 Pi / 16 )
- data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
-//
- data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
- data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
-//
- data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
- data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
-//
- data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
- data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
-//
- data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
- data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
-//
- data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
- data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
-//
- data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
- data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
-//
- data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
- data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
-//
- data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
- data8 0x0000000000000000 // cos ( 8 Pi / 16 )
-//
- data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
- data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
-//
- data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
- data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
-//
- data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
- data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
-//
- data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
- data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
-//
- data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
- data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
-//
- data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
- data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
-//
- data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
- data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
-//
- data8 0x0000000000000000 // sin ( 16 Pi / 16 )
- data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
-//
- data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
- data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
-//
- data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
- data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
-//
- data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
- data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
-//
- data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
- data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
-//
- data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
- data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
-//
- data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
- data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
-//
- data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
- data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
-//
- data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
- data8 0x0000000000000000 // cos ( 24 Pi / 16 )
-//
- data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
- data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
-//
- data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
- data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
-//
- data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
- data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
-//
- data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
- data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
-//
- data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
- data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
-//
- data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
- data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
-//
- data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
- data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
-//
- data8 0x0000000000000000 // sin ( 32 Pi / 16 )
- data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-GLOBAL_IEEE754_ENTRY(sincosf)
-// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
-{ .mlx
- alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
- movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
-
-}
-// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
- addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
- movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
-
-{ .mfi
- ld8 cisf_AD_1 = [cisf_AD_1]
- fnorm.s1 cisf_NORM_f8 = cisf_Arg
- cmp.eq p13, p14 = r0, r0 // p13 set for sincos
-}
-// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
- mov cisf_GR_exp_2tom61 = 0xffff-61
- nop.i 0
- br.cond.sptk _CISF_COMMON
-};;
-GLOBAL_IEEE754_END(sincosf)
-
-GLOBAL_LIBM_ENTRY(__libm_sincosf)
-{ .mlx
-// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
- alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
- movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
-}
-// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
-{ .mlx
- addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
- movl cisf_GR_rshf_2to61 = 0x47b8000000000000
-};;
-
-// p14 set for __libm_sincos and cis
-{ .mfi
- ld8 cisf_AD_1 = [cisf_AD_1]
- fnorm.s1 cisf_NORM_f8 = cisf_Arg
- cmp.eq p14, p13 = r0, r0
-}
-// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
-{ .mib
- mov cisf_GR_exp_2tom61 = 0xffff-61
- nop.i 0
- nop.b 0
-};;
-
-_CISF_COMMON:
-// Form two constants we need
-// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-// fcmp used to set denormal, and invalid on snans
-{ .mfi
- setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
- fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
- addl cisf_gr_tmp = -1, r0
-}
-// cisf_GR_rshf = 1.1000 2^63 for right shift
-{ .mlx
- setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
- movl cisf_GR_rshf = 0x43e8000000000000
-};;
-
-// Form another constant
-// 2^-61 for scaling Nfloat
-// 0x10017 is register_bias + 24.
-// So if f8 >= 2^24, go to large args routine
-{ .mmi
- getf.exp cisf_r_signexp = cisf_Arg
- setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
- mov cisf_exp_limit = 0x10017
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-// 1.1000...000 * 2^63, the right shift constant
-{ .mmb
- ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
- setf.d cisf_RSHF = cisf_GR_rshf
-(p6) br.cond.spnt _CISF_SPECIAL_ARGS
-};;
-
-{ .mmi
- ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
- setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
- nop.i 0
-};;
-
-// Start loading P, Q coefficients
-{ .mmi
- ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
- nop.m 0
- dep.z cisf_r_exp = cisf_r_signexp, 0, 17
-};;
-
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x10017
-{ .mmb
- ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
- cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
-(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
-};;
-
-// cisf_W = x * cisf_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-// rightmost bits of significand
-{ .mfi
- nop.m 0
- fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
- nop.i 0
-};;
-
-// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
-{ .mfi
- nop.m 0
- fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
- nop.i 0
-};;
-
-// N = (int)cisf_int_Nfloat
-{ .mfi
- getf.sig cisf_GR_n = cisf_W_2TO61_RSH
- nop.f 0
- nop.i 0
-};;
-
-// Add 2^(k-1) (which is in cisf_r_sincos) to N
-// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
-// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
-{ .mfi
- add cisf_GR_n_cos = 0x8, cisf_GR_n
- fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
- nop.i 0
-};;
-
-//Get M (least k+1 bits of N)
-{ .mmi
- and cisf_GR_m_sin = 0x1f,cisf_GR_n
- and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
- nop.i 0
-};;
-
-{ .mmi
- shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
- shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
- nop.i 0
-};;
-
-// den. input to set uflow
-{ .mmf
- ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
- ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
- fclass.m.unc p10,p0 = cisf_Arg,0x0b
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
- nop.i 0
-};;
-
-{ .mmf
- nop.m 0
- nop.m 0
- fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
- nop.i 0
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
- nop.i 0
-};;
-
-// If den. arg, force underflow to be set
-{ .mfi
- nop.m 0
-(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
- nop.i 0
-};;
-
-//Final sin
-{ .mfi
- nop.m 0
- fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
- nop.i 0
-}
-//Final cos
-{ .mfb
- nop.m 0
- fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
-(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
- stfs [cisf_pResSin] = cisf_Sin_res
- stfs [cisf_pResCos] = cisf_Cos_res
- br.ret.sptk b0 // common exit for sincos main path
-};;
-
-_CISF_SPECIAL_ARGS:
-// sinf(+/-0) = +/-0
-// sinf(Inf) = NaN
-// sinf(NaN) = NaN
-{ .mfi
- nop.m 999
- fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
- nop.i 999
-};;
-
-// cosf(+/-0) = 1.0
-// cosf(Inf) = NaN
-// cosf(NaN) = NaN
-{ .mfb
- nop.m 999
- fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
-(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
-};;
-
-{ .mmb
- stfs [cisf_pResSin] = cisf_Sin_res
- stfs [cisf_pResCos] = cisf_Cos_res
- br.ret.sptk b0 // special exit for sincos main path
-};;
-
- // exit for sincos
- // NOTE! r8 and r9 used only because of compiler issue
- // connected with float point complex function arguments pass
- // After fix of this issue this operations can be deleted
-_CISF_RETURN:
-{ .mmb
- getf.s r8 = cisf_Cos_res
- getf.s r9 = cisf_Sin_res
- br.ret.sptk b0 // exit for sincos
-};;
-GLOBAL_LIBM_END(__libm_sincosf)
-
-//// |x| > 2^24 path ///////
-.proc _CISF_LARGE_ARGS
-_CISF_LARGE_ARGS:
-.prologue
-{ .mfi
- nop.m 0
- nop.f 0
-.save ar.pfs, GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs
-};;
-
-{ .mfi
- mov GR_SAVE_GP = gp
- nop.f 0
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0
-};;
-
-.body
-// Call of huge arguments sincos
-{ .mib
- nop.m 0
- mov GR_SAVE_PR = pr
- br.call.sptk b0 = __libm_sincos_large
-};;
-
-{ .mfi
- mov gp = GR_SAVE_GP
- nop.f 0
- mov pr = GR_SAVE_PR, 0x1fffe
-}
-;;
-
-{ .mfi
- nop.m 0
- nop.f 0
- mov b0 = GR_SAVE_B0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
- mov ar.pfs = GR_SAVE_PFS
-}
-// exit for |x| > 2^24 path (__libm_sincos and cis)
-{ .mfb
- nop.m 0
- fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
-(p14) br.cond.sptk _CISF_RETURN
-};;
-
-{ .mmb
- stfs [cisf_pResSin] = cisf_Sin_res
- stfs [cisf_pResCos] = cisf_Cos_res
- br.ret.sptk b0 // exit for sincos |x| > 2^24 path
-};;
-
-.endp _CISF_LARGE_ARGS
-
-.type __libm_sincos_large#,@function
-.global __libm_sincos_large#
-