aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/libm_sincos_large.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/libm_sincos_large.S')
-rw-r--r--sysdeps/ia64/fpu/libm_sincos_large.S2757
1 files changed, 0 insertions, 2757 deletions
diff --git a/sysdeps/ia64/fpu/libm_sincos_large.S b/sysdeps/ia64/fpu/libm_sincos_large.S
deleted file mode 100644
index b09d3693a6..0000000000
--- a/sysdeps/ia64/fpu/libm_sincos_large.S
+++ /dev/null
@@ -1,2757 +0,0 @@
-.file "libm_sincos_large.s"
-
-
-// Copyright (c) 2002 - 2003, Intel Corporation
-// All rights reserved.
-//
-// Contributed 2002 by the Intel Numerics Group, Intel Corporation
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/15/02 Initial version
-// 05/13/02 Changed interface to __libm_pi_by_2_reduce
-// 02/10/03 Reordered header: .section, .global, .proc, .align;
-// used data8 for long double table values
-// 05/15/03 Reformatted data tables
-//
-//
-// Overview of operation
-//==============================================================
-//
-// These functions calculate the sin and cos for inputs
-// greater than 2^10
-//
-// __libm_sin_large#
-// __libm_cos_large#
-// They accept argument in f8
-// and return result in f8 without final rounding
-//
-// __libm_sincos_large#
-// It accepts argument in f8
-// and returns cos in f8 and sin in f9 without final rounding
-//
-//
-//*********************************************************************
-//
-// Accuracy: Within .7 ulps for 80-bit floating point values
-// Very accurate for double precision values
-//
-//*********************************************************************
-//
-// Resources Used:
-//
-// Floating-Point Registers: f8 as Input Value, f8 and f9 as Return Values
-// f32-f103
-//
-// General Purpose Registers:
-// r32-r43
-// r44-r45 (Used to pass arguments to pi_by_2 reduce routine)
-//
-// Predicate Registers: p6-p13
-//
-//*********************************************************************
-//
-// IEEE Special Conditions:
-//
-// Denormal fault raised on denormal inputs
-// Overflow exceptions do not occur
-// Underflow exceptions raised when appropriate for sin
-// (No specialized error handling for this routine)
-// Inexact raised when appropriate by algorithm
-//
-// sin(SNaN) = QNaN
-// sin(QNaN) = QNaN
-// sin(inf) = QNaN
-// sin(+/-0) = +/-0
-// cos(inf) = QNaN
-// cos(SNaN) = QNaN
-// cos(QNaN) = QNaN
-// cos(0) = 1
-//
-//*********************************************************************
-//
-// Mathematical Description
-// ========================
-//
-// The computation of FSIN and FCOS is best handled in one piece of
-// code. The main reason is that given any argument Arg, computation
-// of trigonometric functions first calculate N and an approximation
-// to alpha where
-//
-// Arg = N pi/2 + alpha, |alpha| <= pi/4.
-//
-// Since
-//
-// cos( Arg ) = sin( (N+1) pi/2 + alpha ),
-//
-// therefore, the code for computing sine will produce cosine as long
-// as 1 is added to N immediately after the argument reduction
-// process.
-//
-// Let M = N if sine
-// N+1 if cosine.
-//
-// Now, given
-//
-// Arg = M pi/2 + alpha, |alpha| <= pi/4,
-//
-// let I = M mod 4, or I be the two lsb of M when M is represented
-// as 2's complement. I = [i_0 i_1]. Then
-//
-// sin( Arg ) = (-1)^i_0 sin( alpha ) if i_1 = 0,
-// = (-1)^i_0 cos( alpha ) if i_1 = 1.
-//
-// For example:
-// if M = -1, I = 11
-// sin ((-pi/2 + alpha) = (-1) cos (alpha)
-// if M = 0, I = 00
-// sin (alpha) = sin (alpha)
-// if M = 1, I = 01
-// sin (pi/2 + alpha) = cos (alpha)
-// if M = 2, I = 10
-// sin (pi + alpha) = (-1) sin (alpha)
-// if M = 3, I = 11
-// sin ((3/2)pi + alpha) = (-1) cos (alpha)
-//
-// The value of alpha is obtained by argument reduction and
-// represented by two working precision numbers r and c where
-//
-// alpha = r + c accurately.
-//
-// The reduction method is described in a previous write up.
-// The argument reduction scheme identifies 4 cases. For Cases 2
-// and 4, because |alpha| is small, sin(r+c) and cos(r+c) can be
-// computed very easily by 2 or 3 terms of the Taylor series
-// expansion as follows:
-//
-// Case 2:
-// -------
-//
-// sin(r + c) = r + c - r^3/6 accurately
-// cos(r + c) = 1 - 2^(-67) accurately
-//
-// Case 4:
-// -------
-//
-// sin(r + c) = r + c - r^3/6 + r^5/120 accurately
-// cos(r + c) = 1 - r^2/2 + r^4/24 accurately
-//
-// The only cases left are Cases 1 and 3 of the argument reduction
-// procedure. These two cases will be merged since after the
-// argument is reduced in either cases, we have the reduced argument
-// represented as r + c and that the magnitude |r + c| is not small
-// enough to allow the usage of a very short approximation.
-//
-// The required calculation is either
-//
-// sin(r + c) = sin(r) + correction, or
-// cos(r + c) = cos(r) + correction.
-//
-// Specifically,
-//
-// sin(r + c) = sin(r) + c sin'(r) + O(c^2)
-// = sin(r) + c cos (r) + O(c^2)
-// = sin(r) + c(1 - r^2/2) accurately.
-// Similarly,
-//
-// cos(r + c) = cos(r) - c sin(r) + O(c^2)
-// = cos(r) - c(r - r^3/6) accurately.
-//
-// We therefore concentrate on accurately calculating sin(r) and
-// cos(r) for a working-precision number r, |r| <= pi/4 to within
-// 0.1% or so.
-//
-// The greatest challenge of this task is that the second terms of
-// the Taylor series
-//
-// r - r^3/3! + r^r/5! - ...
-//
-// and
-//
-// 1 - r^2/2! + r^4/4! - ...
-//
-// are not very small when |r| is close to pi/4 and the rounding
-// errors will be a concern if simple polynomial accumulation is
-// used. When |r| < 2^-3, however, the second terms will be small
-// enough (6 bits or so of right shift) that a normal Horner
-// recurrence suffices. Hence there are two cases that we consider
-// in the accurate computation of sin(r) and cos(r), |r| <= pi/4.
-//
-// Case small_r: |r| < 2^(-3)
-// --------------------------
-//
-// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
-// we have
-//
-// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
-// = (-1)^i_0 * cos(r + c) if i_1 = 1
-//
-// can be accurately approximated by
-//
-// sin(Arg) = (-1)^i_0 * [sin(r) + c] if i_1 = 0
-// = (-1)^i_0 * [cos(r) - c*r] if i_1 = 1
-//
-// because |r| is small and thus the second terms in the correction
-// are unneccessary.
-//
-// Finally, sin(r) and cos(r) are approximated by polynomials of
-// moderate lengths.
-//
-// sin(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
-// cos(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
-//
-// We can make use of predicates to selectively calculate
-// sin(r) or cos(r) based on i_1.
-//
-// Case normal_r: 2^(-3) <= |r| <= pi/4
-// ------------------------------------
-//
-// This case is more likely than the previous one if one considers
-// r to be uniformly distributed in [-pi/4 pi/4]. Again,
-//
-// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
-// = (-1)^i_0 * cos(r + c) if i_1 = 1.
-//
-// Because |r| is now larger, we need one extra term in the
-// correction. sin(Arg) can be accurately approximated by
-//
-// sin(Arg) = (-1)^i_0 * [sin(r) + c(1-r^2/2)] if i_1 = 0
-// = (-1)^i_0 * [cos(r) - c*r*(1 - r^2/6)] i_1 = 1.
-//
-// Finally, sin(r) and cos(r) are approximated by polynomials of
-// moderate lengths.
-//
-// sin(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
-// PP_2 r^5 + ... + PP_8 r^17
-//
-// cos(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
-//
-// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
-// The crux in accurate computation is to calculate
-//
-// r + PP_1_hi r^3 or 1 + QQ_1 r^2
-//
-// accurately as two pieces: U_hi and U_lo. The way to achieve this
-// is to obtain r_hi as a 10 sig. bit number that approximates r to
-// roughly 8 bits or so of accuracy. (One convenient way is
-//
-// r_hi := frcpa( frcpa( r ) ).)
-//
-// This way,
-//
-// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
-// PP_1_hi (r^3 - r_hi^3)
-// = [r + PP_1_hi r_hi^3] +
-// [PP_1_hi (r - r_hi)
-// (r^2 + r_hi r + r_hi^2) ]
-// = U_hi + U_lo
-//
-// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
-// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
-// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
-// and that there is no more than 8 bit shift off between r and
-// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
-// calculated without any error. Finally, the fact that
-//
-// |U_lo| <= 2^(-8) |U_hi|
-//
-// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
-// 8 extra bits of accuracy.
-//
-// Similarly,
-//
-// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
-// [QQ_1 (r - r_hi)(r + r_hi)]
-// = U_hi + U_lo.
-//
-// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
-//
-// If i_1 = 0, then
-//
-// U_hi := r + PP_1_hi * r_hi^3
-// U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
-// poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
-// correction := c * ( 1 + C_1 r^2 )
-//
-// Else ...i_1 = 1
-//
-// U_hi := 1 + QQ_1 * r_hi * r_hi
-// U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
-// poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
-// correction := -c * r * (1 + S_1 * r^2)
-//
-// End
-//
-// Finally,
-//
-// V := poly + ( U_lo + correction )
-//
-// / U_hi + V if i_0 = 0
-// result := |
-// \ (-U_hi) - V if i_0 = 1
-//
-// It is important that in the last step, negation of U_hi is
-// performed prior to the subtraction which is to be performed in
-// the user-set rounding mode.
-//
-//
-// Algorithmic Description
-// =======================
-//
-// The argument reduction algorithm is tightly integrated into FSIN
-// and FCOS which share the same code. The following is complete and
-// self-contained. The argument reduction description given
-// previously is repeated below.
-//
-//
-// Step 0. Initialization.
-//
-// If FSIN is invoked, set N_inc := 0; else if FCOS is invoked,
-// set N_inc := 1.
-//
-// Step 1. Check for exceptional and special cases.
-//
-// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
-// handling.
-// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
-// arguments. This is the most likely case.
-// * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
-// arguments.
-// * If |Arg| >= 2^63, go to Step 10 for special handling.
-//
-// Step 2. Reduction of moderate arguments.
-//
-// If |Arg| < pi/4 ...quick branch
-// N_fix := N_inc (integer)
-// r := Arg
-// c := 0.0
-// Branch to Step 4, Case_1_complete
-// Else ...cf. argument reduction
-// N := Arg * two_by_PI (fp)
-// N_fix := fcvt.fx( N ) (int)
-// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
-// s := Arg - N * P_1 (first piece of pi/2)
-// w := -N * P_2 (second piece of pi/2)
-//
-// If |s| >= 2^(-33)
-// go to Step 3, Case_1_reduce
-// Else
-// go to Step 7, Case_2_reduce
-// Endif
-// Endif
-//
-// Step 3. Case_1_reduce.
-//
-// r := s + w
-// c := (s - r) + w ...observe order
-//
-// Step 4. Case_1_complete
-//
-// ...At this point, the reduced argument alpha is
-// ...accurately represented as r + c.
-// If |r| < 2^(-3), go to Step 6, small_r.
-//
-// Step 5. Normal_r.
-//
-// Let [i_0 i_1] by the 2 lsb of N_fix.
-// FR_rsq := r * r
-// r_hi := frcpa( frcpa( r ) )
-// r_lo := r - r_hi
-//
-// If i_1 = 0, then
-// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
-// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
-// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
-// correction := c + c*C_1*FR_rsq ...any order
-// Else
-// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
-// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
-// U_lo := QQ_1 * r_lo * (r + r_hi)
-// correction := -c*(r + S_1*FR_rsq*r) ...any order
-// Endif
-//
-// V := poly + (U_lo + correction) ...observe order
-//
-// result := (i_0 == 0? 1.0 : -1.0)
-//
-// Last instruction in user-set rounding mode
-//
-// result := (i_0 == 0? result*U_hi + V :
-// result*U_hi - V)
-//
-// Return
-//
-// Step 6. Small_r.
-//
-// ...Use flush to zero mode without causing exception
-// Let [i_0 i_1] be the two lsb of N_fix.
-//
-// FR_rsq := r * r
-//
-// If i_1 = 0 then
-// z := FR_rsq*FR_rsq; z := FR_rsq*z *r
-// poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
-// poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
-// correction := c
-// result := r
-// Else
-// z := FR_rsq*FR_rsq; z := FR_rsq*z
-// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
-// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
-// correction := -c*r
-// result := 1
-// Endif
-//
-// poly := poly_hi + (z * poly_lo + correction)
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-// Return
-//
-// Step 7. Case_2_reduce.
-//
-// ...Refer to the write up for argument reduction for
-// ...rationale. The reduction algorithm below is taken from
-// ...argument reduction description and integrated this.
-//
-// w := N*P_3
-// U_1 := N*P_2 + w ...FMA
-// U_2 := (N*P_2 - U_1) + w ...2 FMA
-// ...U_1 + U_2 is N*(P_2+P_3) accurately
-//
-// r := s - U_1
-// c := ( (s - r) - U_1 ) - U_2
-//
-// ...The mathematical sum r + c approximates the reduced
-// ...argument accurately. Note that although compared to
-// ...Case 1, this case requires much more work to reduce
-// ...the argument, the subsequent calculation needed for
-// ...any of the trigonometric function is very little because
-// ...|alpha| < 1.01*2^(-33) and thus two terms of the
-// ...Taylor series expansion suffices.
-//
-// If i_1 = 0 then
-// poly := c + S_1 * r * r * r ...any order
-// result := r
-// Else
-// poly := -2^(-67)
-// result := 1.0
-// Endif
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-//
-// Return
-//
-//
-// Step 8. Pre-reduction of large arguments.
-//
-// ...Again, the following reduction procedure was described
-// ...in the separate write up for argument reduction, which
-// ...is tightly integrated here.
-
-// N_0 := Arg * Inv_P_0
-// N_0_fix := fcvt.fx( N_0 )
-// N_0 := fcvt.xf( N_0_fix)
-
-// Arg' := Arg - N_0 * P_0
-// w := N_0 * d_1
-// N := Arg' * two_by_PI
-// N_fix := fcvt.fx( N )
-// N := fcvt.xf( N_fix )
-// N_fix := N_fix + N_inc
-//
-// s := Arg' - N * P_1
-// w := w - N * P_2
-//
-// If |s| >= 2^(-14)
-// go to Step 3
-// Else
-// go to Step 9
-// Endif
-//
-// Step 9. Case_4_reduce.
-//
-// ...first obtain N_0*d_1 and -N*P_2 accurately
-// U_hi := N_0 * d_1 V_hi := -N*P_2
-// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
-//
-// ...compute the contribution from N_0*d_1 and -N*P_3
-// w := -N*P_3
-// w := w + N_0*d_2
-// t := U_lo + V_lo + w ...any order
-//
-// ...at this point, the mathematical value
-// ...s + U_hi + V_hi + t approximates the true reduced argument
-// ...accurately. Just need to compute this accurately.
-//
-// ...Calculate U_hi + V_hi accurately:
-// A := U_hi + V_hi
-// if |U_hi| >= |V_hi| then
-// a := (U_hi - A) + V_hi
-// else
-// a := (V_hi - A) + U_hi
-// endif
-// ...order in computing "a" must be observed. This branch is
-// ...best implemented by predicates.
-// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
-// ...much smaller than A: |a| <= (1/2)ulp(A).
-//
-// ...Just need to calculate s + A + a + t
-// C_hi := s + A t := t + a
-// C_lo := (s - C_hi) + A
-// C_lo := C_lo + t
-//
-// ...Final steps for reduction
-// r := C_hi + C_lo
-// c := (C_hi - r) + C_lo
-//
-// ...At this point, we have r and c
-// ...And all we need is a couple of terms of the corresponding
-// ...Taylor series.
-//
-// If i_1 = 0
-// poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
-// result := r
-// Else
-// poly := FR_rsq*(C_1 + FR_rsq*C_2)
-// result := 1
-// Endif
-//
-// If i_0 = 1, result := -result
-//
-// Last operation. Perform in user-set rounding mode
-//
-// result := (i_0 == 0? result + poly :
-// result - poly )
-// Return
-//
-// Large Arguments: For arguments above 2**63, a Payne-Hanek
-// style argument reduction is used and pi_by_2 reduce is called.
-//
-
-
-RODATA
-.align 16
-
-LOCAL_OBJECT_START(FSINCOS_CONSTANTS)
-
-data4 0x4B800000 // two**24
-data4 0xCB800000 // -two**24
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
-data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
-data8 0xC90FDAA22168C235, 0x00003FFF // P_1
-data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
-data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
-data4 0x5F000000 // two**63
-data4 0xDF000000 // -two**63
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
-data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
-data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
-data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
-data8 0xC90FDAA22168C234, 0x0000BFFE // neg_pi_by_4
-data4 0x3E000000 // two**-3
-data4 0xBE000000 // -two**-3
-data4 0x00000000 // pad
-data4 0x00000000 // pad
-data4 0x2F000000 // two**-33
-data4 0xAF000000 // -two**-33
-data4 0x9E000000 // -two**-67
-data4 0x00000000 // pad
-data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
-data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
-data8 0xB092382F640AD517, 0x00003FDE // PP_6
-data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
-data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
-data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
-data8 0x8888888888888962, 0x00003FF8 // PP_2
-data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
-data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
-data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
-data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
-data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x8000000000000000, 0x0000BFFE // QQ_1
-data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
-data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
-data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
-data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
-data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
-data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
-data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
-data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
-data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
-data8 0x88888888888868DB, 0x00003FF8 // S_2
-data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
-data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
-data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
-data4 0x38800000 // two**-14
-data4 0xB8800000 // -two**-14
-LOCAL_OBJECT_END(FSINCOS_CONSTANTS)
-
-// sin and cos registers
-
-// FR
-FR_Input_X = f8
-
-FR_r = f8
-FR_c = f9
-
-FR_Two_to_63 = f32
-FR_Two_to_24 = f33
-FR_Pi_by_4 = f33
-FR_Two_to_M14 = f34
-FR_Two_to_M33 = f35
-FR_Neg_Two_to_24 = f36
-FR_Neg_Pi_by_4 = f36
-FR_Neg_Two_to_M14 = f37
-FR_Neg_Two_to_M33 = f38
-FR_Neg_Two_to_M67 = f39
-FR_Inv_pi_by_2 = f40
-FR_N_float = f41
-FR_N_fix = f42
-FR_P_1 = f43
-FR_P_2 = f44
-FR_P_3 = f45
-FR_s = f46
-FR_w = f47
-FR_d_2 = f48
-FR_prelim = f49
-FR_Z = f50
-FR_A = f51
-FR_a = f52
-FR_t = f53
-FR_U_1 = f54
-FR_U_2 = f55
-FR_C_1 = f56
-FR_C_2 = f57
-FR_C_3 = f58
-FR_C_4 = f59
-FR_C_5 = f60
-FR_S_1 = f61
-FR_S_2 = f62
-FR_S_3 = f63
-FR_S_4 = f64
-FR_S_5 = f65
-FR_poly_hi = f66
-FR_poly_lo = f67
-FR_r_hi = f68
-FR_r_lo = f69
-FR_rsq = f70
-FR_r_cubed = f71
-FR_C_hi = f72
-FR_N_0 = f73
-FR_d_1 = f74
-FR_V = f75
-FR_V_hi = f75
-FR_V_lo = f76
-FR_U_hi = f77
-FR_U_lo = f78
-FR_U_hiabs = f79
-FR_V_hiabs = f80
-FR_PP_8 = f81
-FR_QQ_8 = f81
-FR_PP_7 = f82
-FR_QQ_7 = f82
-FR_PP_6 = f83
-FR_QQ_6 = f83
-FR_PP_5 = f84
-FR_QQ_5 = f84
-FR_PP_4 = f85
-FR_QQ_4 = f85
-FR_PP_3 = f86
-FR_QQ_3 = f86
-FR_PP_2 = f87
-FR_QQ_2 = f87
-FR_QQ_1 = f88
-FR_N_0_fix = f89
-FR_Inv_P_0 = f90
-FR_corr = f91
-FR_poly = f92
-FR_Neg_Two_to_M3 = f93
-FR_Two_to_M3 = f94
-FR_Neg_Two_to_63 = f94
-FR_P_0 = f95
-FR_C_lo = f96
-FR_PP_1 = f97
-FR_PP_1_lo = f98
-FR_ArgPrime = f99
-
-// GR
-GR_Table_Base = r32
-GR_Table_Base1 = r33
-GR_i_0 = r34
-GR_i_1 = r35
-GR_N_Inc = r36
-GR_Sin_or_Cos = r37
-
-GR_SAVE_B0 = r39
-GR_SAVE_GP = r40
-GR_SAVE_PFS = r41
-
-// sincos combined routine registers
-
-// GR
-GR_SINCOS_SAVE_PFS = r32
-GR_SINCOS_SAVE_B0 = r33
-GR_SINCOS_SAVE_GP = r34
-
-// FR
-FR_SINCOS_ARG = f100
-FR_SINCOS_RES_SIN = f101
-
-
-.section .text
-
-
-GLOBAL_LIBM_ENTRY(__libm_sincos_large)
-
-{ .mfi
- alloc GR_SINCOS_SAVE_PFS = ar.pfs,0,3,0,0
- fma.s1 FR_SINCOS_ARG = f8, f1, f0 // Save argument for sin and cos
- mov GR_SINCOS_SAVE_B0 = b0
-};;
-
-{ .mfb
- mov GR_SINCOS_SAVE_GP = gp
- nop.f 0
- br.call.sptk b0 = __libm_sin_large // Call sin
-};;
-
-{ .mfi
- nop.m 0
- fma.s1 FR_SINCOS_RES_SIN = f8, f1, f0 // Save sin result
- nop.i 0
-};;
-
-{ .mfb
- nop.m 0
- fma.s1 f8 = FR_SINCOS_ARG, f1, f0 // Arg for cos
- br.call.sptk b0 = __libm_cos_large // Call cos
-};;
-
-{ .mfi
- mov gp = GR_SINCOS_SAVE_GP
- fma.s1 f9 = FR_SINCOS_RES_SIN, f1, f0 // Out sin result
- mov b0 = GR_SINCOS_SAVE_B0
-};;
-
-{ .mib
- nop.m 0
- mov ar.pfs = GR_SINCOS_SAVE_PFS
- br.ret.sptk b0 // sincos_large exit
-};;
-
-GLOBAL_LIBM_END(__libm_sincos_large)
-
-
-
-
-GLOBAL_LIBM_ENTRY(__libm_sin_large)
-
-{ .mlx
-alloc GR_Table_Base = ar.pfs,0,12,2,0
- movl GR_Sin_or_Cos = 0x0 ;;
-}
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-{ .mib
- nop.m 999
- nop.i 999
- br.cond.sptk SINCOS_CONTINUE ;;
-}
-
-GLOBAL_LIBM_END(__libm_sin_large)
-
-GLOBAL_LIBM_ENTRY(__libm_cos_large)
-
-{ .mlx
-alloc GR_Table_Base= ar.pfs,0,12,2,0
- movl GR_Sin_or_Cos = 0x1 ;;
-}
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-//
-// Load Table Address
-//
-SINCOS_CONTINUE:
-
-{ .mmi
- add GR_Table_Base1 = 96, GR_Table_Base
- ldfs FR_Two_to_24 = [GR_Table_Base], 4
- nop.i 999
-}
-;;
-
-{ .mmi
- nop.m 999
-//
-// Load 2**24, load 2**63.
-//
- ldfs FR_Neg_Two_to_24 = [GR_Table_Base], 12
- mov r41 = ar.pfs ;;
-}
-
-{ .mfi
- ldfs FR_Two_to_63 = [GR_Table_Base1], 4
-//
-// Check for unnormals - unsupported operands. We do not want
-// to generate denormal exception
-// Check for NatVals, QNaNs, SNaNs, +/-Infs
-// Check for EM unsupporteds
-// Check for Zero
-//
- fclass.m.unc p6, p8 = FR_Input_X, 0x1E3
- mov r40 = gp ;;
-}
-
-{ .mfi
- nop.m 999
- fclass.nm.unc p8, p0 = FR_Input_X, 0x1FF
-// GR_Sin_or_Cos denotes
- mov r39 = b0
-}
-
-{ .mfb
- ldfs FR_Neg_Two_to_63 = [GR_Table_Base1], 12
- fclass.m.unc p10, p0 = FR_Input_X, 0x007
-(p6) br.cond.spnt SINCOS_SPECIAL ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p8) br.cond.spnt SINCOS_SPECIAL ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-//
-// Branch if +/- NaN, Inf.
-// Load -2**24, load -2**63.
-//
-(p10) br.cond.spnt SINCOS_ZERO ;;
-}
-
-{ .mmb
- ldfe FR_Inv_pi_by_2 = [GR_Table_Base], 16
- ldfe FR_Inv_P_0 = [GR_Table_Base1], 16
- nop.b 999 ;;
-}
-
-{ .mmb
- nop.m 999
- ldfe FR_d_1 = [GR_Table_Base1], 16
- nop.b 999 ;;
-}
-//
-// Raise possible denormal operand flag with useful fcmp
-// Is x <= -2**63
-// Load Inv_P_0 for pre-reduction
-// Load Inv_pi_by_2
-//
-
-{ .mmb
- ldfe FR_P_0 = [GR_Table_Base], 16
- ldfe FR_d_2 = [GR_Table_Base1], 16
- nop.b 999 ;;
-}
-//
-// Load P_0
-// Load d_1
-// Is x >= 2**63
-// Is x <= -2**24?
-//
-
-{ .mmi
- ldfe FR_P_1 = [GR_Table_Base], 16 ;;
-//
-// Load P_1
-// Load d_2
-// Is x >= 2**24?
-//
- ldfe FR_P_2 = [GR_Table_Base], 16
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
- ldfe FR_P_3 = [GR_Table_Base], 16
- fcmp.le.unc.s1 p7, p8 = FR_Input_X, FR_Neg_Two_to_24
-}
-
-{ .mfi
- nop.m 999
-//
-// Branch if +/- zero.
-// Decide about the paths to take:
-// If -2**24 < FR_Input_X < 2**24 - CASE 1 OR 2
-// OTHERWISE - CASE 3 OR 4
-//
- fcmp.le.unc.s1 p10, p11 = FR_Input_X, FR_Neg_Two_to_63
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p8) fcmp.ge.s1 p7, p0 = FR_Input_X, FR_Two_to_24
- nop.i 999
-}
-
-{ .mfi
- ldfe FR_Pi_by_4 = [GR_Table_Base1], 16
-(p11) fcmp.ge.s1 p10, p0 = FR_Input_X, FR_Two_to_63
- nop.i 999 ;;
-}
-
-{ .mmi
- ldfe FR_Neg_Pi_by_4 = [GR_Table_Base1], 16 ;;
- ldfs FR_Two_to_M3 = [GR_Table_Base1], 4
- nop.i 999 ;;
-}
-
-{ .mib
- ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1], 12
- nop.i 999
-//
-// Load P_2
-// Load P_3
-// Load pi_by_4
-// Load neg_pi_by_4
-// Load 2**(-3)
-// Load -2**(-3).
-//
-(p10) br.cond.spnt SINCOS_ARG_TOO_LARGE ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-//
-// Branch out if x >= 2**63. Use Payne-Hanek Reduction
-//
-(p7) br.cond.spnt SINCOS_LARGER_ARG ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Branch if Arg <= -2**24 or Arg >= 2**24 and use pre-reduction.
-//
- fma.s1 FR_N_float = FR_Input_X, FR_Inv_pi_by_2, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
- fcmp.lt.unc.s1 p6, p7 = FR_Input_X, FR_Pi_by_4
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Select the case when |Arg| < pi/4
-// Else Select the case when |Arg| >= pi/4
-//
- fcvt.fx.s1 FR_N_fix = FR_N_float
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N = Arg * 2/pi
-// Check if Arg < pi/4
-//
-(p6) fcmp.gt.s1 p6, p7 = FR_Input_X, FR_Neg_Pi_by_4
- nop.i 999 ;;
-}
-//
-// Case 2: Convert integer N_fix back to normalized floating-point value.
-// Case 1: p8 is only affected when p6 is set
-//
-
-{ .mfi
-(p7) ldfs FR_Two_to_M33 = [GR_Table_Base1], 4
-//
-// Grab the integer part of N and call it N_fix
-//
-(p6) fmerge.se FR_r = FR_Input_X, FR_Input_X
-// If |x| < pi/4, r = x and c = 0
-// lf |x| < pi/4, is x < 2**(-3).
-// r = Arg
-// c = 0
-(p6) mov GR_N_Inc = GR_Sin_or_Cos ;;
-}
-
-{ .mmf
- nop.m 999
-(p7) ldfs FR_Neg_Two_to_M33 = [GR_Table_Base1], 4
-(p6) fmerge.se FR_c = f0, f0
-}
-
-{ .mfi
- nop.m 999
-(p6) fcmp.lt.unc.s1 p8, p9 = FR_Input_X, FR_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
-// If |x| >= pi/4,
-// Create the right N for |x| < pi/4 and otherwise
-// Case 2: Place integer part of N in GP register
-//
-(p7) fcvt.xf FR_N_float = FR_N_fix
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
-(p7) getf.sig GR_N_Inc = FR_N_fix
-(p8) fcmp.gt.s1 p8, p0 = FR_Input_X, FR_Neg_Two_to_M3 ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-//
-// Load 2**(-33), -2**(-33)
-//
-(p8) br.cond.spnt SINCOS_SMALL_R ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p6) br.cond.sptk SINCOS_NORMAL_R ;;
-}
-//
-// if |x| < pi/4, branch based on |x| < 2**(-3) or otherwise.
-//
-//
-// In this branch, |x| >= pi/4.
-//
-
-{ .mfi
- ldfs FR_Neg_Two_to_M67 = [GR_Table_Base1], 8
-//
-// Load -2**(-67)
-//
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X
-//
-// w = N * P_2
-// s = -N * P_1 + Arg
-//
- add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_w = FR_N_float, FR_P_2, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Adjust N_fix by N_inc to determine whether sine or
-// cosine is being calculated
-//
- fcmp.lt.unc.s1 p7, p6 = FR_s, FR_Two_to_M33
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-// Remember x >= pi/4.
-// Is s <= -2**(-33) or s >= 2**(-33) (p6)
-// or -2**(-33) < s < 2**(-33) (p7)
-(p6) fms.s1 FR_r = FR_s, f1, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p6) fms.s1 FR_c = FR_s, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// For big s: r = s - w: No futher reduction is necessary
-// For small s: w = N * P_3 (change sign) More reduction
-//
-(p6) fcmp.lt.unc.s1 p8, p9 = FR_r, FR_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p8) fcmp.gt.s1 p8, p9 = FR_r, FR_Neg_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-//
-// For big s: Is |r| < 2**(-3)?
-// For big s: c = S - r
-// For small s: U_1 = N * P_2 + w
-//
-// If p8 is set, prepare to branch to Small_R.
-// If p9 is set, prepare to branch to Normal_R.
-// For big s, r is complete here.
-//
-(p6) fms.s1 FR_c = FR_c, f1, FR_w
-//
-// For big s: c = c + w (w has not been negated.)
-// For small s: r = S - U_1
-//
-(p8) br.cond.spnt SINCOS_SMALL_R ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p9) br.cond.sptk SINCOS_NORMAL_R ;;
-}
-
-{ .mfi
-(p7) add GR_Table_Base1 = 224, GR_Table_Base1
-//
-// Branch to SINCOS_SMALL_R or SINCOS_NORMAL_R
-//
-(p7) fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
-//
-// c = S - U_1
-// r = S_1 * r
-//
-//
-(p7) extr.u GR_i_1 = GR_N_Inc, 0, 1
-}
-
-{ .mmi
- nop.m 999 ;;
-//
-// Get [i_0,i_1] - two lsb of N_fix_gr.
-// Do dummy fmpy so inexact is always set.
-//
-(p7) cmp.eq.unc p9, p10 = 0x0, GR_i_1
-(p7) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-//
-// For small s: U_2 = N * P_2 - U_1
-// S_1 stored constant - grab the one stored with the
-// coefficients.
-//
-
-{ .mfi
-(p7) ldfe FR_S_1 = [GR_Table_Base1], 16
-//
-// Check if i_1 and i_0 != 0
-//
-(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67
-(p7) cmp.eq.unc p11, p12 = 0x0, GR_i_0 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fms.s1 FR_s = FR_s, f1, FR_r
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// S = S - r
-// U_2 = U_2 + w
-// load S_1
-//
-(p7) fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_U_2 = FR_U_2, f1, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//(p7) fmerge.se FR_Input_X = FR_r, FR_r
-(p7) fmerge.se FR_prelim = FR_r, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//(p10) fma.s1 FR_Input_X = f0, f1, f1
-(p10) fma.s1 FR_prelim = f0, f1, f1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// FR_rsq = r * r
-// Save r as the result.
-//
-(p7) fms.s1 FR_c = FR_s, f1, FR_U_1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if ( i_1 ==0) poly = c + S_1*r*r*r
-// else Result = 1
-//
-//(p12) fnma.s1 FR_Input_X = FR_Input_X, f1, f0
-(p12) fnma.s1 FR_prelim = FR_prelim, f1, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.s1 FR_r = FR_S_1, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fma.d.s1 FR_S_1 = FR_S_1, FR_S_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// If i_1 != 0, poly = 2**(-67)
-//
-(p7) fms.s1 FR_c = FR_c, f1, FR_U_2
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// c = c - U_2
-//
-(p9) fma.s1 FR_poly = FR_r, FR_rsq, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// i_0 != 0, so Result = -Result
-//
-(p11) fma.s1 FR_Input_X = FR_prelim, f1, FR_poly
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
-(p12) fms.s1 FR_Input_X = FR_prelim, f1, FR_poly
-//
-// if (i_0 == 0), Result = Result + poly
-// else Result = Result - poly
-//
- br.ret.sptk b0 ;;
-}
-SINCOS_LARGER_ARG:
-
-{ .mfi
- nop.m 999
- fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0
- nop.i 999
-}
-;;
-
-// This path for argument > 2*24
-// Adjust table_ptr1 to beginning of table.
-//
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-//
-// Point to 2*-14
-// N_0 = Arg * Inv_P_0
-//
-
-{ .mmi
- add GR_Table_Base = 688, GR_Table_Base ;;
- ldfs FR_Two_to_M14 = [GR_Table_Base], 4
- nop.i 999 ;;
-}
-
-{ .mfi
- ldfs FR_Neg_Two_to_M14 = [GR_Table_Base], 0
- nop.f 999
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load values 2**(-14) and -2**(-14)
-//
- fcvt.fx.s1 FR_N_0_fix = FR_N_0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N_0_fix = integer part of N_0
-//
- fcvt.xf FR_N_0 = FR_N_0_fix
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Make N_0 the integer part
-//
- fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_w = FR_N_0, FR_d_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Arg' = -N_0 * P_0 + Arg
-// w = N_0 * d_1
-//
- fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N = A' * 2/pi
-//
- fcvt.fx.s1 FR_N_fix = FR_N_float
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N_fix is the integer part
-//
- fcvt.xf FR_N_float = FR_N_fix
- nop.i 999 ;;
-}
-
-{ .mfi
- getf.sig GR_N_Inc = FR_N_fix
- nop.f 999
- nop.i 999 ;;
-}
-
-{ .mii
- nop.m 999
- nop.i 999 ;;
- add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// N is the integer part of the reduced-reduced argument.
-// Put the integer in a GP register
-//
- fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
- fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// s = -N*P_1 + Arg'
-// w = -N*P_2 + w
-// N_fix_gr = N_fix_gr + N_inc
-//
- fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// For |s| > 2**(-14) r = S + w (r complete)
-// Else U_hi = N_0 * d_1
-//
-(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Either S <= -2**(-14) or S >= 2**(-14)
-// or -2**(-14) < s < 2**(-14)
-//
-(p8) fma.s1 FR_r = FR_s, f1, FR_w
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// We need abs of both U_hi and V_hi - don't
-// worry about switched sign of V_hi.
-//
-(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// Big s: finish up c = (S - r) + w (c complete)
-// Case 4: A = U_hi + V_hi
-// Note: Worry about switched sign of V_hi, so subtract instead of add.
-//
-(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-// For big s: c = S - r
-// For small s do more work: U_lo = N_0 * d_1 - U_hi
-//
-(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// For big s: Is |r| < 2**(-3)
-// For big s: if p12 set, prepare to branch to Small_R.
-// For big s: If p13 set, prepare to branch to Normal_R.
-//
-(p8) fms.s1 FR_c = FR_s, f1, FR_r
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// For small S: V_hi = N * P_2
-// w = N * P_3
-// Note the product does not include the (-) as in the writeup
-// so (-) missing for V_hi and w.
-//
-(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p8) fma.s1 FR_c = FR_c, f1, FR_w
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
-(p12) br.cond.spnt SINCOS_SMALL_R ;;
-}
-
-{ .mib
- nop.m 999
- nop.i 999
-(p13) br.cond.sptk SINCOS_NORMAL_R ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
-// The remaining stuff is for Case 4.
-// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
-// Note: the (-) is still missing for V_lo.
-// Small s: w = w + N_0 * d_2
-// Note: the (-) is now incorporated in w.
-//
-(p9) fcmp.ge.unc.s1 p10, p11 = FR_U_hiabs, FR_V_hiabs
- extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// C_hi = S + A
-//
-(p9) fma.s1 FR_t = FR_U_lo, f1, FR_V_lo
- extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// t = U_lo + V_lo
-//
-//
-(p10) fms.s1 FR_a = FR_U_hi, f1, FR_A
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p11) fma.s1 FR_a = FR_V_hi, f1, FR_A
- nop.i 999
-}
-;;
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-{ .mfi
- add GR_Table_Base = 528, GR_Table_Base
-//
-// Is U_hiabs >= V_hiabs?
-//
-(p9) fma.s1 FR_C_hi = FR_s, f1, FR_A
- nop.i 999 ;;
-}
-
-{ .mmi
- ldfe FR_C_1 = [GR_Table_Base], 16 ;;
- ldfe FR_C_2 = [GR_Table_Base], 64
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
-//
-// c = c + C_lo finished.
-// Load C_2
-//
- ldfe FR_S_1 = [GR_Table_Base], 16
-//
-// C_lo = S - C_hi
-//
- fma.s1 FR_t = FR_t, f1, FR_w ;;
-}
-//
-// r and c have been computed.
-// Make sure ftz mode is set - should be automatic when using wre
-// |r| < 2**(-3)
-// Get [i_0,i_1] - two lsb of N_fix.
-// Load S_1
-//
-
-{ .mfi
- ldfe FR_S_2 = [GR_Table_Base], 64
-//
-// t = t + w
-//
-(p10) fms.s1 FR_a = FR_a, f1, FR_V_hi
- cmp.eq.unc p9, p10 = 0x0, GR_i_0
-}
-
-{ .mfi
- nop.m 999
-//
-// For larger u than v: a = U_hi - A
-// Else a = V_hi - A (do an add to account for missing (-) on V_hi
-//
- fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p11) fms.s1 FR_a = FR_U_hi, f1, FR_a
- cmp.eq.unc p11, p12 = 0x0, GR_i_1
-}
-
-{ .mfi
- nop.m 999
-//
-// If u > v: a = (U_hi - A) + V_hi
-// Else a = (V_hi - A) + U_hi
-// In each case account for negative missing from V_hi.
-//
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_A
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// C_lo = (S - C_hi) + A
-//
- fma.s1 FR_t = FR_t, f1, FR_a
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// t = t + a
-//
- fma.s1 FR_C_lo = FR_C_lo, f1, FR_t
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// C_lo = C_lo + t
-// Adjust Table_Base to beginning of table
-//
- fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load S_2
-//
- fma.s1 FR_rsq = FR_r, FR_r, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// Table_Base points to C_1
-// r = C_hi + C_lo
-//
- fms.s1 FR_c = FR_C_hi, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_1 ==0: poly = S_2 * FR_rsq + S_1
-// else poly = C_2 * FR_rsq + C_1
-//
-//(p11) fma.s1 FR_Input_X = f0, f1, FR_r
-(p11) fma.s1 FR_prelim = f0, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//(p12) fma.s1 FR_Input_X = f0, f1, f1
-(p12) fma.s1 FR_prelim = f0, f1, f1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Compute r_cube = FR_rsq * r
-//
-(p11) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// Compute FR_rsq = r * r
-// Is i_1 == 0 ?
-//
- fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// c = C_hi - r
-// Load C_1
-//
- fma.s1 FR_c = FR_c, f1, FR_C_lo
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_1 ==0: poly = r_cube * poly + c
-// else poly = FR_rsq * poly
-//
-//(p10) fms.s1 FR_Input_X = f0, f1, FR_Input_X
-(p10) fms.s1 FR_prelim = f0, f1, FR_prelim
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_1 ==0: Result = r
-// else Result = 1.0
-//
-(p11) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if i_0 !=0: Result = -Result
-//
-(p9) fma.s1 FR_Input_X = FR_prelim, f1, FR_poly
- nop.i 999 ;;
-}
-
-{ .mfb
- nop.m 999
-(p10) fms.s1 FR_Input_X = FR_prelim, f1, FR_poly
-//
-// if i_0 == 0: Result = Result + poly
-// else Result = Result - poly
-//
- br.ret.sptk b0 ;;
-}
-SINCOS_SMALL_R:
-
-{ .mii
- nop.m 999
- extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
-//
-//
-// Compare both i_1 and i_0 with 0.
-// if i_1 == 0, set p9.
-// if i_0 == 0, set p11.
-//
- cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_rsq = FR_r, FR_r, f0
- extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Z = Z * FR_rsq
-//
-(p10) fnma.s1 FR_c = FR_c, FR_r, f0
- cmp.eq.unc p11, p12 = 0x0, GR_i_0
-}
-;;
-
-// ******************************************************************
-// ******************************************************************
-// ******************************************************************
-// r and c have been computed.
-// We know whether this is the sine or cosine routine.
-// Make sure ftz mode is set - should be automatic when using wre
-// |r| < 2**(-3)
-//
-// Set table_ptr1 to beginning of constant table.
-// Get [i_0,i_1] - two lsb of N_fix_gr.
-//
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-//
-// Set table_ptr1 to point to S_5.
-// Set table_ptr1 to point to C_5.
-// Compute FR_rsq = r * r
-//
-
-{ .mfi
-(p9) add GR_Table_Base = 672, GR_Table_Base
-(p10) fmerge.s FR_r = f1, f1
-(p10) add GR_Table_Base = 592, GR_Table_Base ;;
-}
-//
-// Set table_ptr1 to point to S_5.
-// Set table_ptr1 to point to C_5.
-//
-
-{ .mmi
-(p9) ldfe FR_S_5 = [GR_Table_Base], -16 ;;
-//
-// if (i_1 == 0) load S_5
-// if (i_1 != 0) load C_5
-//
-(p9) ldfe FR_S_4 = [GR_Table_Base], -16
- nop.i 999 ;;
-}
-
-{ .mmf
-(p10) ldfe FR_C_5 = [GR_Table_Base], -16
-//
-// Z = FR_rsq * FR_rsq
-//
-(p9) ldfe FR_S_3 = [GR_Table_Base], -16
-//
-// Compute FR_rsq = r * r
-// if (i_1 == 0) load S_4
-// if (i_1 != 0) load C_4
-//
- fma.s1 FR_Z = FR_rsq, FR_rsq, f0 ;;
-}
-//
-// if (i_1 == 0) load S_3
-// if (i_1 != 0) load C_3
-//
-
-{ .mmi
-(p9) ldfe FR_S_2 = [GR_Table_Base], -16 ;;
-//
-// if (i_1 == 0) load S_2
-// if (i_1 != 0) load C_2
-//
-(p9) ldfe FR_S_1 = [GR_Table_Base], -16
- nop.i 999
-}
-
-{ .mmi
-(p10) ldfe FR_C_4 = [GR_Table_Base], -16 ;;
-(p10) ldfe FR_C_3 = [GR_Table_Base], -16
- nop.i 999 ;;
-}
-
-{ .mmi
-(p10) ldfe FR_C_2 = [GR_Table_Base], -16 ;;
-(p10) ldfe FR_C_1 = [GR_Table_Base], -16
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 != 0):
-// poly_lo = FR_rsq * C_5 + C_4
-// poly_hi = FR_rsq * C_2 + C_1
-//
-(p9) fma.s1 FR_Z = FR_Z, FR_r, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0) load S_1
-// if (i_1 != 0) load C_1
-//
-(p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// c = -c * r
-// dummy fmpy's to flag inexact.
-//
-(p9) fma.d.s1 FR_S_4 = FR_S_4, FR_S_4, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_lo = FR_rsq * poly_lo + C_3
-// poly_hi = FR_rsq * poly_hi
-//
- fma.s1 FR_Z = FR_Z, FR_rsq, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0):
-// poly_lo = FR_rsq * S_5 + S_4
-// poly_hi = FR_rsq * S_2 + S_1
-//
-(p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0):
-// Z = Z * r for only one of the small r cases - not there
-// in original implementation notes.
-//
-(p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.d.s1 FR_C_1 = FR_C_1, FR_C_1, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_lo = FR_rsq * poly_lo + S_3
-// poly_hi = FR_rsq * poly_hi
-//
-(p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 == 0): dummy fmpy's to flag inexact
-// r = 1
-//
-(p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_hi = r * poly_hi
-//
- fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fms.s1 FR_r = f0, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// poly_hi = Z * poly_lo + c
-// if i_0 == 1: r = -r
-//
- fma.s1 FR_poly = FR_poly, f1, FR_poly_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p12) fms.s1 FR_Input_X = FR_r, f1, FR_poly
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-//
-// poly = poly + poly_hi
-//
-(p11) fma.s1 FR_Input_X = FR_r, f1, FR_poly
-//
-// if (i_0 == 0) Result = r + poly
-// if (i_0 != 0) Result = r - poly
-//
- br.ret.sptk b0 ;;
-}
-SINCOS_NORMAL_R:
-
-{ .mii
- nop.m 999
- extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
-//
-// Set table_ptr1 and table_ptr2 to base address of
-// constant table.
- cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
-}
-
-{ .mfi
- nop.m 999
- fma.s1 FR_rsq = FR_r, FR_r, f0
- extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
-}
-
-{ .mfi
- nop.m 999
- frcpa.s1 FR_r_hi, p6 = f1, FR_r
- cmp.eq.unc p11, p12 = 0x0, GR_i_0
-}
-;;
-
-// ******************************************************************
-// ******************************************************************
-// ******************************************************************
-//
-// r and c have been computed.
-// We known whether this is the sine or cosine routine.
-// Make sure ftz mode is set - should be automatic when using wre
-// Get [i_0,i_1] - two lsb of N_fix_gr alone.
-//
-
-{ .mmi
- nop.m 999
- addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
- nop.i 999
-}
-;;
-
-{ .mmi
- ld8 GR_Table_Base = [GR_Table_Base]
- nop.m 999
- nop.i 999
-}
-;;
-
-
-{ .mfi
-(p10) add GR_Table_Base = 384, GR_Table_Base
-//(p12) fms.s1 FR_Input_X = f0, f1, f1
-(p12) fms.s1 FR_prelim = f0, f1, f1
-(p9) add GR_Table_Base = 224, GR_Table_Base ;;
-}
-
-{ .mmf
- nop.m 999
-(p10) ldfe FR_QQ_8 = [GR_Table_Base], 16
-//
-// if (i_1==0) poly = poly * FR_rsq + PP_1_lo
-// else poly = FR_rsq * poly
-//
-//(p11) fma.s1 FR_Input_X = f0, f1, f1 ;;
-(p11) fma.s1 FR_prelim = f0, f1, f1 ;;
-}
-
-{ .mmf
-(p10) ldfe FR_QQ_7 = [GR_Table_Base], 16
-//
-// Adjust table pointers based on i_0
-// Compute rsq = r * r
-//
-(p9) ldfe FR_PP_8 = [GR_Table_Base], 16
- fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 ;;
-}
-
-{ .mmf
-(p9) ldfe FR_PP_7 = [GR_Table_Base], 16
-(p10) ldfe FR_QQ_6 = [GR_Table_Base], 16
-//
-// Load PP_8 and QQ_8; PP_7 and QQ_7
-//
- frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi ;;
-}
-//
-// if (i_1==0) poly = PP_7 + FR_rsq * PP_8.
-// else poly = QQ_7 + FR_rsq * QQ_8.
-//
-
-{ .mmb
-(p9) ldfe FR_PP_6 = [GR_Table_Base], 16
-(p10) ldfe FR_QQ_5 = [GR_Table_Base], 16
- nop.b 999 ;;
-}
-
-{ .mmb
-(p9) ldfe FR_PP_5 = [GR_Table_Base], 16
-(p10) ldfe FR_S_1 = [GR_Table_Base], 16
- nop.b 999 ;;
-}
-
-{ .mmb
-(p10) ldfe FR_QQ_1 = [GR_Table_Base], 16
-(p9) ldfe FR_C_1 = [GR_Table_Base], 16
- nop.b 999 ;;
-}
-
-{ .mmi
-(p10) ldfe FR_QQ_4 = [GR_Table_Base], 16 ;;
-(p9) ldfe FR_PP_1 = [GR_Table_Base], 16
- nop.i 999 ;;
-}
-
-{ .mmf
-(p10) ldfe FR_QQ_3 = [GR_Table_Base], 16
-//
-// if (i_1=0) corr = corr + c*c
-// else corr = corr * c
-//
-(p9) ldfe FR_PP_4 = [GR_Table_Base], 16
-(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 ;;
-}
-//
-// if (i_1=0) poly = rsq * poly + PP_5
-// else poly = rsq * poly + QQ_5
-// Load PP_4 or QQ_4
-//
-
-{ .mmf
-(p9) ldfe FR_PP_3 = [GR_Table_Base], 16
-(p10) ldfe FR_QQ_2 = [GR_Table_Base], 16
-//
-// r_hi = frcpa(frcpa(r)).
-// r_cube = r * FR_rsq.
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 ;;
-}
-//
-// Do dummy multiplies so inexact is always set.
-//
-
-{ .mfi
-(p9) ldfe FR_PP_2 = [GR_Table_Base], 16
-//
-// r_lo = r - r_hi
-//
-(p9) fma.s1 FR_U_lo = FR_r_hi, FR_r_hi, f0
- nop.i 999 ;;
-}
-
-{ .mmf
- nop.m 999
-(p9) ldfe FR_PP_1_lo = [GR_Table_Base], 16
-(p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) U_lo = r_hi * r_hi
-// else U_lo = r_hi + r
-//
-(p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) corr = C_1 * rsq
-// else corr = S_1 * r_cubed + r
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) U_hi = r_hi + U_hi
-// else U_hi = QQ_1 * U_hi + 1
-//
-(p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_U_lo
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// U_hi = r_hi * r_hi
-//
- fms.s1 FR_r_lo = FR_r, f1, FR_r_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load PP_1, PP_6, PP_5, and C_1
-// Load QQ_1, QQ_6, QQ_5, and S_1
-//
- fma.s1 FR_U_hi = FR_r_hi, FR_r_hi, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fnma.s1 FR_corr = FR_corr, FR_c, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) U_lo = r * r_hi + U_lo
-// else U_lo = r_lo * U_lo
-//
-(p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 =0) U_hi = r + U_hi
-// if (i_1 =0) U_lo = r_lo * U_lo
-//
-//
-(p9) fma.d.s1 FR_PP_5 = FR_PP_5, FR_PP_4, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1=0) poly = poly * rsq + PP_6
-// else poly = poly * rsq + QQ_6
-//
-(p9) fma.s1 FR_U_hi = FR_r_hi, FR_U_hi, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_hi = FR_QQ_1, FR_U_hi, f1
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.d.s1 FR_QQ_5 = FR_QQ_5, FR_QQ_5, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1!=0) U_hi = PP_1 * U_hi
-// if (i_1!=0) U_lo = r * r + U_lo
-// Load PP_3 or QQ_3
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
- nop.i 999
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// Load PP_2, QQ_2
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) poly = FR_rsq * poly + PP_3
-// else poly = FR_rsq * poly + QQ_3
-// Load PP_1_lo
-//
-(p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1 =0) poly = poly * rsq + pp_r4
-// else poly = poly * rsq + qq_r4
-//
-(p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) U_lo = PP_1_hi * U_lo
-// else U_lo = QQ_1 * U_lo
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_0==0) Result = 1
-// else Result = -1
-//
- fma.s1 FR_V = FR_U_lo, f1, FR_corr
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) poly = FR_rsq * poly + PP_2
-// else poly = FR_rsq * poly + QQ_2
-//
-(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// V = U_lo + corr
-//
-(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//
-// if (i_1==0) poly = r_cube * poly
-// else poly = FR_rsq * poly
-//
- fma.s1 FR_V = FR_poly, f1, FR_V
- nop.i 999 ;;
-}
-
-{ .mfi
- nop.m 999
-//(p12) fms.s1 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
-(p12) fms.s1 FR_Input_X = FR_prelim, FR_U_hi, FR_V
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-//
-// V = V + poly
-//
-//(p11) fma.s1 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
-(p11) fma.s1 FR_Input_X = FR_prelim, FR_U_hi, FR_V
-//
-// if (i_0==0) Result = Result * U_hi + V
-// else Result = Result * U_hi - V
-//
- br.ret.sptk b0 ;;
-}
-
-//
-// If cosine, FR_Input_X = 1
-// If sine, FR_Input_X = +/-Zero (Input FR_Input_X)
-// Results are exact, no exceptions
-//
-SINCOS_ZERO:
-
-{ .mmb
- cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos
- nop.m 999
- nop.b 999 ;;
-}
-
-{ .mfi
- nop.m 999
-(p7) fmerge.s FR_Input_X = FR_Input_X, FR_Input_X
- nop.i 999
-}
-
-{ .mfb
- nop.m 999
-(p6) fmerge.s FR_Input_X = f1, f1
- br.ret.sptk b0 ;;
-}
-
-SINCOS_SPECIAL:
-
-//
-// Path for Arg = +/- QNaN, SNaN, Inf
-// Invalid can be raised. SNaNs
-// become QNaNs
-//
-
-{ .mfb
- nop.m 999
- fmpy.s1 FR_Input_X = FR_Input_X, f0
- br.ret.sptk b0 ;;
-}
-GLOBAL_LIBM_END(__libm_cos_large)
-
-
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-//
-// Special Code to handle very large argument case.
-// Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
-// The interface is custom:
-// On input:
-// (Arg or x) is in f8
-// On output:
-// r is in f8
-// c is in f9
-// N is in r8
-// Be sure to allocate at least 2 GP registers as output registers for
-// __libm_pi_by_2_reduce. This routine uses r49-50. These are used as
-// scratch registers within the __libm_pi_by_2_reduce routine (for speed).
-//
-// We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127. We
-// use this to eliminate save/restore of key fp registers in this calling
-// function.
-//
-// *******************************************************************
-// *******************************************************************
-// *******************************************************************
-
-LOCAL_LIBM_ENTRY(__libm_callout_2)
-SINCOS_ARG_TOO_LARGE:
-
-.prologue
-// Readjust Table ptr
-{ .mfi
- adds GR_Table_Base1 = -16, GR_Table_Base1
- nop.f 999
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-};;
-
-{ .mmi
- ldfs FR_Two_to_M3 = [GR_Table_Base1],4
- mov GR_SAVE_GP=gp // Save gp
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-
-.body
-//
-// Call argument reduction with x in f8
-// Returns with N in r8, r in f8, c in f9
-// Assumes f71-127 are preserved across the call
-//
-{ .mib
- ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1],0
- nop.i 0
- br.call.sptk b0=__libm_pi_by_2_reduce#
-};;
-
-{ .mfi
- add GR_N_Inc = GR_Sin_or_Cos,r8
- fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-
-{ .mfi
- mov gp = GR_SAVE_GP // Restore gp
-(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
-};;
-
-{ .mbb
- nop.m 999
-(p6) br.cond.spnt SINCOS_SMALL_R // Branch if |r| < 1/4
- br.cond.sptk SINCOS_NORMAL_R ;; // Branch if 1/4 <= |r| < pi/4
-}
-
-LOCAL_LIBM_END(__libm_callout_2)
-
-.type __libm_pi_by_2_reduce#,@function
-.global __libm_pi_by_2_reduce#
-