diff options
Diffstat (limited to 'sysdeps/ia64/fpu/e_pow.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_pow.S | 1633 |
1 files changed, 829 insertions, 804 deletions
diff --git a/sysdeps/ia64/fpu/e_pow.S b/sysdeps/ia64/fpu/e_pow.S index 89449c79ec..56f7f078ba 100644 --- a/sysdeps/ia64/fpu/e_pow.S +++ b/sysdeps/ia64/fpu/e_pow.S @@ -1,10 +1,10 @@ .file "pow.s" - -// Copyright (c) 2000 - 2005, Intel Corporation +// Copyright (C) 2000, 2001, Intel Corporation // All rights reserved. // -// Contributed 2000 by the Intel Numerics Group, Intel Corporation +// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, +// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are @@ -20,7 +20,7 @@ // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. - +// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR @@ -35,42 +35,30 @@ // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. +// http://developer.intel.com/opensource. // // History //============================================================== -// 02/02/00 Initial version -// 02/03/00 Added p12 to definite over/under path. With odd power we did not +// 2/02/00 Initial version +// 2/03/00 Added p12 to definite over/under path. With odd power we did not // maintain the sign of x in this path. -// 04/04/00 Unwind support added -// 04/19/00 pow(+-1,inf) now returns NaN -// pow(+-val, +-inf) returns 0 or inf, but now does not call error -// support +// 4/04/00 Unwind support added +// 4/19/00 pow(+-1,inf) now returns NaN +// pow(+-val, +-inf) returns 0 or inf, but now does not call error support // Added s1 to fcvt.fx because invalid flag was incorrectly set. -// 08/15/00 Bundle added after call to __libm_error_support to properly +// 8/15/00 Bundle added after call to __libm_error_support to properly // set [the previously overwritten] GR_Parameter_RESULT. -// 09/07/00 Improved performance by eliminating bank conflicts and other stalls, +// 9/07/00 Improved performance by eliminating bank conflicts and other stalls, // and tweaking the critical path -// 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1 -// 09/28/00 Updated NaN**0 path -// 01/20/01 Fixed denormal flag settings. -// 02/13/01 Improved speed. -// 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity -// problem in round up, down, and to zero modes. Also corrected -// overflow result when x negative, y odd in round up, down, zero. -// 06/14/01 Added brace missing from bundle -// 12/10/01 Corrected case where x negative, 2^52 <= |y| < 2^53, y odd integer. -// 12/20/01 Fixed monotonity problem in round to nearest. -// 02/08/02 Fixed overflow/underflow cases that were not calling error support. -// 05/20/02 Cleaned up namespace and sf0 syntax -// 08/29/02 Improved Itanium 2 performance -// 09/21/02 Added branch for |y*log(x)|<2^-11 to fix monotonicity problems. -// 02/10/03 Reordered header: .section, .global, .proc, .align -// 03/31/05 Reformatted delimiters between data tables +// 9/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1 +// 9/28/00 Updated NaN**0 path +// 1/20/01 Fixed denormal flag settings. +// 2/12/01 Improved speed. // // API //============================================================== -// double pow(double x, double y) +// double pow(double) +// float powf(float) // // Overview of operation //============================================================== @@ -79,51 +67,51 @@ // 1. Log(x) // 2. y Log(x) // 3. exp(y log(x)) -// +// // This means we work with the absolute value of x and merge in the sign later. // Log(x) = G + delta + r -rsq/2 + p // G,delta depend on the exponent of x and table entries. The table entries are // indexed by the exponent of x, called K. -// +// // The G and delta come out of the reduction; r is the reduced x. -// +// // B = frcpa(x) // xB-1 is small means that B is the approximate inverse of x. -// +// // Log(x) = Log( (1/B)(Bx) ) // = Log(1/B) + Log(Bx) // = Log(1/B) + Log( 1 + (Bx-1)) -// +// // x = 2^K 1.x_1x_2.....x_52 -// B= frcpa(x) = 2^-k Cm +// B= frcpa(x) = 2^-k Cm // Log(1/B) = Log(1/(2^-K Cm)) // Log(1/B) = Log((2^K/ Cm)) // Log(1/B) = K Log(2) + Log(1/Cm) -// +// // Log(x) = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1)) -// +// // If you take the significand of x, set the exponent to true 0, then Cm is // the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them. // The frcpa table is indexed by 8 bits, the x_1 thru x_8. // m = x_1x_2...x_8 is an 8-bit index. -// +// // Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255. -// +// // We tabluate as two doubles, T and t, where T +t is the value itself. -// +// // Log(x) = (K Log(2)_hi + T) + (Log(2)_hi + t) + Log( 1 + (Bx-1)) // Log(x) = G + delta + Log( 1 + (Bx-1)) -// +// // The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1. -// +// // Log( 1 + (Bx-1)) = r - rsq/2 + p -// +// // Then, -// +// // yLog(x) = yG + y delta + y(r-rsq/2) + yp // yLog(x) = Z1 + e3 + Z2 + Z3 + (e2 + e3) -// -// +// +// // exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3) // // @@ -145,7 +133,7 @@ // exp(r) = exp(Z - N log2/128) // // r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo -// = Z - N (log2/128) +// = Z - N (log2/128) // // Z = s+d +N (log2/128) // @@ -161,22 +149,22 @@ // n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128 // n log2/128 = I2 log2/8 + I1 log2/128 // -// N log2/128 = M log2 + I2 log2/8 + I1 log2/128 +// N log2/128 = M log2 + I2 log2/8 + I1 log2/128 // // exp(Z) = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128)) // exp(Z) = exp(s) (1+d1) (1+d2)(2^M) 2^I2/8 2^I1/128 // exp(Z) = exp(s) f1 f2 (2^M) 2^I2/8 2^I1/128 // // I1, I2 are table indices. Use a series for exp(s). -// Then get exp(Z) +// Then get exp(Z) // // exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3) -// exp(yLog(x)) = exp(Z) exp(Z3) f3 -// exp(yLog(x)) = exp(Z)f3 exp(Z3) -// exp(yLog(x)) = A exp(Z3) +// exp(yLog(x)) = exp(Z) exp(Z3) f3 +// exp(yLog(x)) = exp(Z)f3 exp(Z3) +// exp(yLog(x)) = A exp(Z3) // // We actually calculate exp(Z3) -1. -// Then, +// Then, // exp(yLog(x)) = A + A( exp(Z3) -1) // @@ -187,146 +175,142 @@ // ============== // The operation (K*log2_hi) must be exact. K is the true exponent of x. // If we allow gradual underflow (denormals), K can be represented in 12 bits -// (as a two's complement number). We assume 13 bits as an engineering -// precaution. -// +// (as a two's complement number). We assume 13 bits as an engineering precaution. +// // +------------+----------------+-+ // | 13 bits | 50 bits | | // +------------+----------------+-+ // 0 1 66 // 2 34 -// +// // So we want the lsb(log2_hi) to be 2^-50 // We get log2 as a quad-extended (15-bit exponent, 128-bit significand) -// +// // 0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...) -// +// // Consider numbering the bits left to right, starting at 0 thru 127. // Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit. -// +// // ...79ab // 0111 1001 1010 1011 // 44 // 89 -// -// So if we shift off the rightmost 14 bits, then (shift back only +// +// So if we shift off the rightmost 14 bits, then (shift back only // the top half) we get -// +// // 0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000 -// +// // Put the right 64-bit signficand in an FR register, convert to double; // it is exact. Put the next 128 bits into a quad register and round to double. // The true exponent of the low part is -51. -// +// // hi is 0 fffe b17217f7d1cf4000 // lo is 0 ffcc e6af278ece601000 -// +// // Convert to double memory format and get -// +// // hi is 0x3fe62e42fefa39e8 -// lo is 0x3cccd5e4f1d9cc02 -// +// lo is 0x3cccd5e4f1d9cc02 +// // log2_hi + log2_lo is an accurate value for log2. -// -// +// +// // The T and t values // ================== // A similar method is used to generate the T and t values. -// +// // K * log2_hi + T must be exact. -// +// // Smallest T,t // ---------- -// The smallest T,t is +// The smallest T,t is // T t -// 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003 -// +// data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003 +// // The exponent is 0x3f6 (biased) or -9 (true). // For the smallest T value, what we want is to clip the significand such that -// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the -// specific for the first entry. In general, it is 0xffff - (biased 15-bit -// exponent). +// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the specific +// for the first entry. In general, it is 0xffff - (biased 15-bit exponent). -// Independently, what we have calculated is the table value as a quad -// precision number. +// Independently, what we have calculated is the table value as a quad precision number. // Table entry 1 is // 0 fff6 80200aaeac44ef38 338f77605fdf8000 -// +// // We store this quad precision number in a data structure that is -// sign: 1 +// sign: 1 // exponent: 15 // signficand_hi: 64 (includes explicit bit) // signficand_lo: 49 // Because the explicit bit is included, the significand is 113 bits. -// +// // Consider significand_hi for table entry 1. -// -// +// +// // +-+--- ... -------+--------------------+ // | | // +-+--- ... -------+--------------------+ // 0 1 4444444455555555556666 // 2345678901234567890123 -// +// // Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc. // Bit 42 is 2^-42. If we shift to the right by 9, the bit in // bit 42 goes in 51. -// +// // So what we want to do is shift bits 43 thru 63 into significand_lo. -// This is shifting bit 42 into bit 63, taking care to retain shifted-off bits. -// Then shifting (just with signficaand_hi) back into bit 42. -// -// The shift_value is 63-42 = 21. In general, this is +// This is shifting bit 42 into bit 63, taking care to retain the shifted-off bits. +// Then shifting (just with signficaand_hi) back into bit 42. +// +// The shift_value is 63-42 = 21. In general, this is // 63 - (51 -(0xffff - 0xfff6)) // For this example, it is // 63 - (51 - 9) = 63 - 42 = 21 -// -// This means we are shifting 21 bits into significand_lo. We must maintain more -// that a 128-bit signficand not to lose bits. So before the shift we put the -// 128-bit significand into a 256-bit signficand and then shift. +// +// This means we are shifting 21 bits into significand_lo. We must maintain more +// that a 128-bit signficand not to lose bits. So before the shift we put the 128-bit +// significand into a 256-bit signficand and then shift. // The 256-bit significand has four parts: hh, hl, lh, and ll. -// +// // Start off with // hh hl lh ll // <64> <49><15_0> <64_0> <64_0> -// +// // After shift by 21 (then return for significand_hi), // <43><21_0> <21><43> <6><58_0> <64_0> -// +// // Take the hh part and convert to a double. There is no rounding here. -// The conversion is exact. The true exponent of the high part is the same as -// the true exponent of the input quad. -// -// We have some 64 plus significand bits for the low part. In this example, we -// have 70 bits. We want to round this to a double. Put them in a quad and then -// do a quad fnorm. -// For this example the true exponent of the low part is +// The conversion is exact. The true exponent of the high part is the same as the +// true exponent of the input quad. +// +// We have some 64 plus significand bits for the low part. In this example, we have +// 70 bits. We want to round this to a double. Put them in a quad and then do a quad fnorm. +// For this example the true exponent of the low part is // true_exponent_of_high - 43 = true_exponent_of_high - (64-21) -// In general, this is -// true_exponent_of_high - (64 - shift_value) -// -// +// In general, this is +// true_exponent_of_high - (64 - shift_value) +// +// // Largest T,t // ---------- // The largest T,t is -// 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))=+6.92171e-001 -// +// data8 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))= +6.92171e-001 +// // Table entry 256 is // 0 fffe b1321ff67cba178c 51da12f4df5a0000 -// -// The shift value is +// +// The shift value is // 63 - (51 -(0xffff - 0xfffe)) = 13 -// -// The true exponent of the low part is +// +// The true exponent of the low part is // true_exponent_of_high - (64 - shift_value) // -1 - (64-13) = -52 // Biased as a double, this is 0x3cb -// -// -// +// +// +// // So then lsb(T) must be >= 2^-51 // msb(Klog2_hi) <= 2^12 -// +// // +--------+---------+ // | 51 bits | <== largest T // +--------+---------+ @@ -336,6 +320,7 @@ // +------------+----------------+-+ + // Special Cases //============================================================== @@ -400,67 +385,63 @@ // X any Y =0 +1 +#include "libm_support.h" + // Assembly macros //============================================================== // integer registers used -pow_GR_signexp_X = r14 -pow_GR_17ones = r15 -pow_AD_P = r16 -pow_GR_exp_2tom8 = r17 -pow_GR_sig_X = r18 -pow_GR_10033 = r19 -pow_GR_16ones = r20 - -pow_AD_Tt = r21 -pow_GR_exp_X = r22 -pow_AD_Q = r23 -pow_GR_true_exp_X = r24 -pow_GR_y_zero = r25 - -pow_GR_exp_Y = r26 -pow_AD_tbl1 = r27 -pow_AD_tbl2 = r28 -pow_GR_offset = r29 -pow_GR_exp_Xm1 = r30 -pow_GR_xneg_yodd = r31 - -pow_GR_signexp_Xm1 = r35 -pow_GR_int_W1 = r36 -pow_GR_int_W2 = r37 -pow_GR_int_N = r38 -pow_GR_index1 = r39 -pow_GR_index2 = r40 - -pow_AD_T1 = r41 -pow_AD_T2 = r42 -pow_int_GR_M = r43 -pow_GR_sig_int_Y = r44 -pow_GR_sign_Y_Gpr = r45 - -pow_GR_17ones_m1 = r46 -pow_GR_one = r47 -pow_GR_sign_Y = r48 -pow_GR_signexp_Y_Gpr = r49 -pow_GR_exp_Y_Gpr = r50 - -pow_GR_true_exp_Y_Gpr = r51 -pow_GR_signexp_Y = r52 -pow_GR_x_one = r53 -pow_GR_exp_2toM63 = r54 -pow_GR_big_pos = r55 - -pow_GR_big_neg = r56 - -GR_SAVE_B0 = r50 -GR_SAVE_GP = r51 -GR_SAVE_PFS = r52 - -GR_Parameter_X = r53 -GR_Parameter_Y = r54 -GR_Parameter_RESULT = r55 -pow_GR_tag = r56 +pow_AD_Tt = r33 +pow_GR_FFF7 = r34 +pow_GR_exp_Y = r34 // duplicate +pow_GR_17ones = r35 + +pow_AD_P = r36 +pow_AD_Q = r37 +pow_AD_tbl1 = r38 +pow_AD_tbl2 = r39 +pow_GR_exp_X = r40 +pow_GR_true_exp_X = r40 // duplicate + +pow_GR_offset = r41 +pow_GR_exp_Xm1 = r42 +pow_GR_sig_X = r43 +pow_GR_signexp_X = r44 + +pow_GR_signexp_Xm1 = r46 +pow_GR_int_W1 = r47 +pow_GR_int_W2 = r48 +pow_GR_int_N = r49 +pow_GR_index1 = r50 + +pow_GR_index2 = r51 +pow_AD_T1 = r52 +pow_AD_T2 = r53 +pow_GR_gt_ln = r53 // duplicate +pow_int_GR_M = r54 +pow_GR_10033 = r55 + +pow_GR_16ones = r56 +pow_GR_sig_int_Y = r57 +pow_GR_sign_Y_Gpr = r58 +pow_GR_17ones_m1 = r59 +pow_GR_one = r60 +pow_GR_sign_Y = r60 + +pow_GR_signexp_Y_Gpr = r61 +pow_GR_exp_Y_Gpr = r62 +pow_GR_true_exp_Y_Gpr = r63 +pow_GR_signexp_Y = r64 + +GR_SAVE_B0 = r65 +GR_SAVE_GP = r66 +GR_SAVE_PFS = r67 + +GR_Parameter_X = r68 +GR_Parameter_Y = r69 +GR_Parameter_RESULT = r70 +pow_GR_tag = r71 // floating point registers used @@ -483,8 +464,7 @@ POW_log2_lo = f43 POW_r = f44 POW_Q0_half = f45 -POW_Q1 = f46 -POW_tmp = f47 +POW_Q1 = f46 POW_log2_hi = f48 POW_Q4 = f49 POW_P1 = f50 @@ -496,7 +476,6 @@ POW_Yrcub = f54 POW_log2_by_128_lo = f55 POW_v6 = f56 -POW_xsq = f57 POW_v4 = f58 POW_v2 = f59 POW_T = f60 @@ -505,7 +484,6 @@ POW_Tt = f61 POW_RSHF = f62 POW_v21ps = f63 POW_s4 = f64 -POW_twoV = f65 POW_U = f66 POW_G = f67 @@ -555,45 +533,44 @@ POW_1ps = f103 POW_A = f104 POW_es = f105 -POW_Xp1 = f106 POW_int_K = f107 POW_K = f108 POW_f123 = f109 POW_Gpr = f110 -POW_Y_Gpr = f111 +POW_Y_Gpr = f111 POW_int_Y = f112 -POW_abs_q = f114 -POW_2toM63 = f115 POW_float_int_Y = f116 POW_ftz_urm_f8 = f117 POW_wre_urm_f8 = f118 -POW_big_neg = f119 -POW_big_pos = f120 +POW_abs_A = f119 +POW_gt_pln = f120 -POW_GY_Z2 = f121 -POW_pYrcub_e3 = f122 -POW_d = f123 -POW_d2 = f124 -POW_poly_d_hi = f121 -POW_poly_d_lo = f122 -POW_poly_d = f121 +POW_xsq = f121 + +POW_twoV = f122 +POW_Xp1 = f123 // Data tables //============================================================== -RODATA +#ifdef _LIBC +.rodata +#else +.data +#endif .align 16 -LOCAL_OBJECT_START(pow_table_P) +pow_table_P: +ASM_TYPE_DIRECTIVE(pow_table_P,@object) data8 0x8000F7B249FF332D, 0x0000BFFC // P_5 data8 0xAAAAAAA9E7902C7F, 0x0000BFFC // P_3 data8 0x80000000000018E5, 0x0000BFFD // P_1 data8 0xb8aa3b295c17f0bc, 0x00004006 // inv_ln2_by_128 -// -// + + data8 0x3FA5555555554A9E // Q_2 data8 0x3F8111124F4DD9F9 // Q_3 data8 0x3FE0000000000000 // Q_0 @@ -603,18 +580,20 @@ data8 0x43e8000000000000 // Right shift constant for exp data8 0xc9e3b39803f2f6af, 0x00003fb7 // ln2_by_128_lo data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q -LOCAL_OBJECT_END(pow_table_P) +ASM_SIZE_DIRECTIVE(pow_table_P) -LOCAL_OBJECT_START(pow_table_Q) +pow_table_Q: +ASM_TYPE_DIRECTIVE(pow_table_Q,@object) data8 0x9249FE7F0DC423CF, 0x00003FFC // P_4 data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC // P_2 data8 0xAAAAAAAAAAAAB505, 0x00003FFD // P_0 data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo = +6.93147e-001 data8 0xb17217f7d1cf79ab, 0x00003ff7 // ln2_by_128_hi -LOCAL_OBJECT_END(pow_table_Q) +ASM_SIZE_DIRECTIVE(pow_table_Q) -LOCAL_OBJECT_START(pow_Tt) +pow_Tt: +ASM_TYPE_DIRECTIVE(pow_Tt,@object) data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 // log(1/frcpa(1+0/256))= +1.95503e-003 data8 0x3f78121214586a00, 0x3cb540e0a5cfc9bc // log(1/frcpa(1+1/256))= +5.87661e-003 data8 0x3f841929f9683200, 0x3cbdf1d57404da1f // log(1/frcpa(1+2/256))= +9.81362e-003 @@ -871,12 +850,13 @@ data8 0x3fe5f673c61a2ed0, 0x3caa385eef5f2789 // log(1/frcpa(1+252/256))= +6.863 data8 0x3fe6065bea385924, 0x3cb11624f165c5b4 // log(1/frcpa(1+253/256))= +6.88276e-001 data8 0x3fe6164bfa7cc068, 0x3cbad884f87073fa // log(1/frcpa(1+254/256))= +6.90222e-001 data8 0x3fe62643fecf9740, 0x3cb78c51da12f4df // log(1/frcpa(1+255/256))= +6.92171e-001 -LOCAL_OBJECT_END(pow_Tt) +ASM_SIZE_DIRECTIVE(pow_Tt) // Table 1 is 2^(index_1/128) where // index_1 goes from 0 to 15 -LOCAL_OBJECT_START(pow_tbl1) +pow_tbl1: +ASM_TYPE_DIRECTIVE(pow_tbl1,@object) data8 0x8000000000000000 , 0x00003FFF data8 0x80B1ED4FD999AB6C , 0x00003FFF data8 0x8164D1F3BC030773 , 0x00003FFF @@ -893,12 +873,13 @@ data8 0x88980E8092DA8527 , 0x00003FFF data8 0x8955EE03618E5FDD , 0x00003FFF data8 0x8A14D575496EFD9A , 0x00003FFF data8 0x8AD4C6452C728924 , 0x00003FFF -LOCAL_OBJECT_END(pow_tbl1) +ASM_SIZE_DIRECTIVE(pow_tbl1) // Table 2 is 2^(index_1/8) where // index_2 goes from 0 to 7 -LOCAL_OBJECT_START(pow_tbl2) +pow_tbl2: +ASM_TYPE_DIRECTIVE(pow_tbl2,@object) data8 0x8000000000000000 , 0x00003FFF data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF data8 0x9837F0518DB8A96F , 0x00003FFF @@ -907,319 +888,402 @@ data8 0xB504F333F9DE6484 , 0x00003FFF data8 0xC5672A115506DADD , 0x00003FFF data8 0xD744FCCAD69D6AF4 , 0x00003FFF data8 0xEAC0C6E7DD24392F , 0x00003FFF -LOCAL_OBJECT_END(pow_tbl2) +ASM_SIZE_DIRECTIVE(pow_tbl2) + +.global pow .section .text -GLOBAL_LIBM_ENTRY(pow) +.proc pow +.align 32 + +pow: -// Get exponent of x. Will be used to calculate K. { .mfi - getf.exp pow_GR_signexp_X = f8 - fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0 - mov pow_GR_17ones = 0x1FFFF + alloc r32=ar.pfs,1,35,4,0 + fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0 + mov pow_GR_17ones = 0x1FFFF } { .mfi - addl pow_AD_P = @ltoff(pow_table_P), gp - fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0 +(p0) addl pow_AD_P = @ltoff(pow_table_P), gp + fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0 nop.i 999 ;; } -// Get significand of x. Will be used to get index to fetch T, Tt. + +// Get exponent of x. Will be used to calculate K. { .mfi - getf.sig pow_GR_sig_X = f8 - frcpa.s1 POW_B, p6 = f1,f8 + getf.exp pow_GR_signexp_X = f8 + frcpa.s1 POW_B, p6 = f1,f8 nop.i 999 } { .mfi ld8 pow_AD_P = [pow_AD_P] - fma.s1 POW_NORM_X = f8,f1,f0 - mov pow_GR_exp_2tom8 = 0xFFF7 + fma.s1 POW_NORM_X = f8,f1,f0 + mov pow_GR_FFF7 = 0xFFF7 } ;; + + +// Get significand of x. Will be used to get index to fetch T, Tt. // p13 = TRUE ==> X is unorm // DOUBLE 0x10033 exponent limit at which y is an integer +// SINGLE 0x10016 { .mfi - nop.m 999 - fclass.m p13,p0 = f8, 0x0b // Test for x unorm - addl pow_GR_10033 = 0x10033, r0 + getf.sig pow_GR_sig_X = f8 + fclass.m p13,p0 = f8, 0x0b // Test for x unorm + addl pow_GR_10033 = 0x10033, r0 } { .mfi mov pow_GR_16ones = 0xFFFF - fma.s1 POW_NORM_Y = f9,f1,f0 + fma.s1 POW_NORM_Y = f9,f1,f0 nop.i 999 } ;; + // p14 = TRUE ==> X is ZERO { .mfi adds pow_AD_Tt = pow_Tt - pow_table_P, pow_AD_P - fclass.m p14,p0 = f8, 0x07 - and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones + fclass.m p14,p15 = f8, 0x07 + and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones } { .mfi - adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P + adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P nop.f 999 nop.i 999 } ;; { .mfi - ldfe POW_P5 = [pow_AD_P], 16 - fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0 - nop.i 999 + ldfe POW_P5 = [pow_AD_P], 16 + fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0 + shl pow_GR_offset = pow_GR_sig_X, 1 } { .mib - ldfe POW_P4 = [pow_AD_Q], 16 - sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones -(p13) br.cond.spnt POW_X_DENORM + ldfe POW_P4 = [pow_AD_Q], 16 + sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones +(p13) br.cond.spnt L(POW_X_DENORM) } ;; + // Continue normal and denormal paths here -POW_COMMON: +L(POW_COMMON): // p11 = TRUE ==> Y is a NAN { .mfi - ldfe POW_P3 = [pow_AD_P], 16 - fclass.m p11,p0 = f9, 0xc3 - nop.i 999 + ldfe POW_P3 = [pow_AD_P], 16 + fclass.m.unc p11,p0 = f9, 0xc3 + shr.u pow_GR_offset = pow_GR_offset,56 } { .mfi - ldfe POW_P2 = [pow_AD_Q], 16 + ldfe POW_P2 = [pow_AD_Q], 16 nop.f 999 - mov pow_GR_y_zero = 0 + nop.i 999 } ;; -// Note POW_Xm1 and POW_r1 are used interchangably + + +// Compute xsq to decide later if |x|=1 +// p11 = TRUE ==> Y is a NaN { .mfi - alloc r32=ar.pfs,2,19,4,0 - fms.s1 POW_r = POW_B, POW_NORM_X,f1 - nop.i 999 + setf.sig POW_int_K = pow_GR_true_exp_X +(p15) fms.s1 POW_r = POW_B, POW_NORM_X,f1 + shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt } { .mfi - setf.sig POW_int_K = pow_GR_true_exp_X -(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0 + nop.m 999 +(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0 nop.i 999 } ;; -// p12 = TRUE if Y is ZERO -// Compute xsq to decide later if |x|=1 + + +// p12 = TRUE ==> X is ZERO and Y is ZERO { .mfi - ldfe POW_P1 = [pow_AD_P], 16 - fclass.m p12,p0 = f9, 0x07 - shl pow_GR_offset = pow_GR_sig_X, 1 + ldfe POW_P1 = [pow_AD_P], 16 +(p14) fclass.m.unc p12,p0 = f9, 0x07 + nop.i 999 } { .mfb - ldfe POW_P0 = [pow_AD_Q], 16 + ldfe POW_P0 = [pow_AD_Q], 16 fma.s1 POW_xsq = POW_NORM_X, POW_NORM_X, f0 -(p11) br.cond.spnt POW_Y_NAN // Branch if y=nan +(p11) br.cond.spnt L(POW_Y_NAN) } ;; + +.pred.rel "mutex",p8,p9 // Get exponent of |x|-1 to use in comparison to 2^-8 -{ .mfi - getf.exp pow_GR_signexp_Xm1 = POW_Xm1 - fcvt.fx.s1 POW_int_Y = POW_NORM_Y - shr.u pow_GR_offset = pow_GR_offset,56 +{ .mmf +(p8) getf.exp pow_GR_signexp_Xm1 = POW_Xp1 +(p9) getf.exp pow_GR_signexp_Xm1 = POW_Xm1 + fcvt.fx.s1 POW_int_Y = POW_NORM_Y } ;; + // p11 = TRUE ==> X is a NAN { .mfi ldfpd POW_log2_hi, POW_log2_lo = [pow_AD_Q], 16 - fclass.m p11,p0 = f8, 0xc3 - shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt + fclass.m.unc p11,p0 = f8, 0xc3 + nop.i 999 } -{ .mfi - ldfe POW_inv_log2_by_128 = [pow_AD_P], 16 - fma.s1 POW_delta = f0,f0,f0 // delta=0 in case |x| near 1 -(p12) mov pow_GR_y_zero = 1 +{ .mib + ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16 + nop.i 999 +(p12) br.cond.spnt L(POW_X_0_Y_0) } ;; + +// p14 = TRUE ==> X is zero +// p15 = TRUE ==> X is zero AND Y is negative +// p10 = TRUE ==> X is zero AND Y is >= zero { .mfi - ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16 - fma.s1 POW_G = f0,f0,f0 // G=0 in case |x| near 1 - and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones + ldfe POW_inv_log2_by_128 = [pow_AD_P], 16 +(p14) fcmp.lt.unc.s1 p15, p10 = f9,f0 + nop.i 999 } +{ .mfi + nop.m 999 + nop.f 999 + and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones +} ;; + // Determine if we will use the |x| near 1 path (p6) or normal path (p7) +// p12 = TRUE ==> X is a NAN and Y is a zero +// p13 = TRUE ==> X is a NAN and Y is anything else { .mfi - getf.exp pow_GR_signexp_Y = POW_NORM_Y - nop.f 999 - cmp.lt p6,p7 = pow_GR_exp_Xm1, pow_GR_exp_2tom8 -} -{ .mfb - ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16 - fma.s1 POW_rsq = POW_r, POW_r,f0 -(p11) br.cond.spnt POW_X_NAN // Branch if x=nan and y not nan + getf.exp pow_GR_signexp_Y = POW_NORM_Y +(p11) fclass.m.unc p12,p13 = f9, 0x07 + cmp.lt.unc p6,p7 = pow_GR_exp_Xm1, pow_GR_FFF7 } +{ .mfi + ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16 + fma.s1 POW_rsq = POW_r, POW_r,f0 + nop.i 999 ;; +} // If on the x near 1 path, assign r1 to r and r1*r1 to rsq { .mfi - ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16 -(p6) fma.s1 POW_r = POW_r1, f1, f0 + ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16 +(p6) fma.s1 POW_r = POW_r1, f1, f0 + nop.i 999 +} +{ .mfi + nop.m 999 +(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0 nop.i 999 +;; +} + + +{ .mfi + ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16 +(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4 + and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones } { .mfb nop.m 999 -(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0 -(p14) br.cond.spnt POW_X_0 // Branch if x zero and y not nan +(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4 +(p12) br.cond.spnt L(POW_X_NAN_Y_0) } ;; + { .mfi - ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16 -(p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4 - nop.i 999 + nop.m 999 +(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2 + andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones } -{ .mfi - mov pow_GR_exp_2toM63 = 0xffc0 // Exponent of 2^-63 -(p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4 - nop.i 999 +{ .mfb + nop.m 999 +(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2 +(p12) br.cond.spnt L(POW_X_NAN_Y_0) } ;; { .mfi - setf.exp POW_2toM63 = pow_GR_exp_2toM63 // Form 2^-63 for test of q -(p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2 + nop.m 999 + fcvt.xf POW_K = POW_int_K nop.i 999 } -{ .mfi +{ .mfb nop.m 999 -(p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2 - nop.i 999 +(p13) fma.d f8 = f8,f1,f0 +(p13) br.ret.spnt b0 // Exit if x nan, y anything but zero } ;; - + +// p10 = TRUE ==> X is zero AND Y is positive +// p8 = TRUE ==> X is zero AND Y is outside integer range (treat as even int) +// return +0 +// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer) +{ .mfi +(p10) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 +(p6) fmerge.s POW_delta = f0,f0 + nop.i 999 +} { .mfi nop.m 999 - fcvt.xf POW_K = POW_int_K +(p6) fma.s1 POW_G = f0,f0,f0 nop.i 999 } ;; { .mfi - getf.sig pow_GR_sig_int_Y = POW_int_Y - fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0 - and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones + getf.sig pow_GR_sig_int_Y = POW_int_Y + fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0 + nop.i 999 } -{ .mfb - andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones - fma.s1 POW_U = POW_NORM_Y,POW_r,f0 -(p12) br.cond.spnt POW_Y_0 // Branch if y=zero, x not zero or nan +{ .mfi + nop.m 999 + fma.s1 POW_U = POW_NORM_Y,POW_r,f0 + nop.i 999 } ;; -// p11 = TRUE ==> X is NEGATIVE but not inf { .mfi - ldfe POW_log2_by_128_lo = [pow_AD_P], 16 - fclass.m p11,p0 = f8, 0x1a + ldfe POW_log2_by_128_lo = [pow_AD_P], 16 +(p6) fma.s1 POW_v2 = POW_P1, POW_r1, POW_P0 nop.i 999 } { .mfi - ldfe POW_log2_by_128_hi = [pow_AD_Q], 16 - fma.s1 POW_v2 = POW_P1, POW_r, POW_P0 + ldfe POW_log2_by_128_hi = [pow_AD_Q], 16 +(p7) fma.s1 POW_v2 = POW_P1, POW_r, POW_P0 nop.i 999 } ;; + { .mfi nop.m 999 - fcvt.xf POW_float_int_Y = POW_int_Y + fcvt.xf POW_float_int_Y = POW_int_Y nop.i 999 } { .mfi nop.m 999 - fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4 - adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q + fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4 + adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q } ;; { .mfi nop.m 999 -(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt +(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt nop.i 999 } { .mfi nop.m 999 -(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T - adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1 +(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T + adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1 } ;; + { .mfi nop.m 999 - fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U + fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U nop.i 999 } { .mfi nop.m 999 - fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U + fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U nop.i 999 } ;; +// p11 = TRUE ==> X is NEGATIVE +// p8 = TRUE ==> X is zero AND Y is outside intger range (treat as even int) +// return +0 { .mfi nop.m 999 - fma.s1 POW_Yrcub = POW_rsq, POW_U, f0 + fclass.m.unc p11,p0 = f8, 0x1a nop.i 999 } -{ .mfi +{ .mfb + nop.m 999 +(p8) fma.d f8 = f0,f0,f0 +(p8) br.ret.spnt b0 +} +;; + +{ .mfi nop.m 999 - fma.s1 POW_p = POW_rsq, POW_v3, POW_v2 + fma.s1 POW_Yrcub = POW_rsq, POW_U, f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 POW_p = POW_rsq, POW_v3, POW_v2 nop.i 999 } ;; -// p11 = TRUE ==> X is NEGATIVE but not inf -// p12 = TRUE ==> X is NEGATIVE AND Y already even int + +// p11 = TRUE ==> X is NEGATIVE +// p12 = TRUE ==> X is NEGATIVE AND Y already int // p13 = TRUE ==> X is NEGATIVE AND Y possible int { .mfi nop.m 999 - fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0 -(p11) cmp.gt.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033 + fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0 +(p11) cmp.ge.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033 } { .mfi nop.m 999 - fma.s1 POW_Gpr = POW_G, f1, POW_r + fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0 nop.i 999 } ;; -// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand +// p9 = TRUE ==> X is zero AND Y is within integer range (may not be integer) +// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd) +// p7 = TRUE ==> X is zero AND Y is NOT an integer, return +0 { .mfi nop.m 999 - fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF +(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y nop.i 999 } -{ .mfi +{ .mfi nop.m 999 - fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2 + fma.s1 POW_Gpr = POW_G, f1, POW_r nop.i 999 } ;; +// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand { .mfi nop.m 999 - fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0 + fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF + nop.i 999 +} +{ .mfi + nop.m 999 + fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2 nop.i 999 } ;; + +// If x=0 and y>0, test y and flag denormal +// p6 = TRUE ==> X is zero AND Y is an integer (may be even or odd) +// p8 = TRUE ==> X is zero AND Y is an odd integer +// p9 = TRUE ==> X is zero AND Y is an even integer { .mfi nop.m 999 - fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0 - nop.i 999 +(p10) fcmp.eq.s0 p15,p0 = f9,f0 +(p6) tbit.nz.unc p8,p9 = pow_GR_sig_int_Y,0 } { .mfi nop.m 999 - fma.s1 POW_GY_Z2 = POW_G, POW_NORM_Y, POW_Z2 + fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0 nop.i 999 } ;; @@ -1227,7 +1291,7 @@ POW_COMMON: // By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand { .mfi nop.m 999 - fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1 + fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1 nop.i 999 } { .mfi @@ -1237,60 +1301,81 @@ POW_COMMON: } ;; -// p13 = TRUE ==> X is NEGATIVE AND Y possible int -// p10 = TRUE ==> X is NEG and Y is an int -// p12 = TRUE ==> X is NEG and Y is not an int { .mfi nop.m 999 -(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y - mov pow_GR_xneg_yodd = 0 +(p7) fma.d f8 = f0,f0,f0 // Result +0 if x zero and y not integer + nop.i 999 } -{ .mfi +{ .mfb nop.m 999 - fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0 - nop.i 999 + fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0 +(p8) br.ret.spnt b0 // Exit if x zero and y odd integer } ;; // By subtracting RSHF we get rounded integer POW_N2float +// p15 = TRUE ==> X_0_Y_NEG { .mfi nop.m 999 fms.s1 POW_N2float = POW_W2, f1, POW_RSHF nop.i 999 } -{ .mfi +{ .mfb nop.m 999 - fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2 - nop.i 999 + fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2 +(p15) br.cond.spnt L(POW_X_0_Y_NEG) } ;; + + { .mfi nop.m 999 - fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0 + fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0 nop.i 999 } -{ .mfi +{ .mfb nop.m 999 - fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2 - nop.i 999 + fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2 +(p7) br.ret.spnt b0 // Exit if x zero and y not an integer } ;; + + // Extract rounded integer from rightmost significand of POW_W2 // By subtracting RSHF we get rounded integer POW_N1float { .mfi - getf.sig pow_GR_int_W2 = POW_W2 + getf.sig pow_GR_int_W2 = POW_W2 fms.s1 POW_N1float = POW_W1, f1, POW_RSHF nop.i 999 } { .mfi nop.m 999 - fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half + fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half nop.i 999 } ;; + + + +// p13 = TRUE ==> X is NEGATIVE AND Y possible int +// p10 = TRUE ==> X is NEG and Y is an int +// p12 = TRUE ==> X is NEG and Y is not an int +{ .mfi + nop.m 999 +(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y + nop.i 999 +} +{ .mfb + nop.m 999 +(p9) fma.d f8 = f0,f0,f0 // Result +0 if x zero and y even integer +(p9) br.ret.spnt b0 // Exit if x zero and y even integer +} +;; + + { .mfi nop.m 999 fnma.s1 POW_s2 = POW_N2float, POW_log2_by_128_hi, POW_Z2 @@ -1298,7 +1383,7 @@ POW_COMMON: } { .mfi nop.m 999 - fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV + fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV nop.i 999 } ;; @@ -1306,283 +1391,278 @@ POW_COMMON: // Extract rounded integer from rightmost significand of POW_W1 // Test if x inf { .mfi - getf.sig pow_GR_int_W1 = POW_W1 - fclass.m p15,p0 = POW_NORM_X, 0x23 + getf.sig pow_GR_int_W1 = POW_W1 + fclass.m.unc p15,p0 = POW_NORM_X, 0x23 nop.i 999 } { .mfb nop.m 999 fnma.s1 POW_f2 = POW_N2float, POW_log2_by_128_lo, f1 -(p12) br.cond.spnt POW_X_NEG_Y_NONINT // Branch if x neg, y not integer +(p12) br.cond.spnt L(POW_X_NEG_Y_NONINT) // Branch if x neg, y not integer } ;; -// p11 = TRUE ==> X is +1.0 // p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer { .mfi - getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr - fcmp.eq.s1 p11,p0 = POW_NORM_X, f1 -(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0 -} -{ .mfi - nop.m 999 - fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4 - nop.i 999 + getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr + fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4 +(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0 } ;; + { .mfi - nop.m 999 + add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2 fnma.s1 POW_f1 = POW_N1float, POW_log2_by_128_lo, f1 nop.i 999 } { .mfb nop.m 999 fnma.s1 POW_s1 = POW_N1float, POW_log2_by_128_hi, POW_Z1 -(p15) br.cond.spnt POW_X_INF +(p15) br.cond.spnt L(POW_X_INF) } ;; + // Test x and y and flag denormal { .mfi - nop.m 999 + and pow_GR_index1 = 0x0f, pow_GR_int_N fcmp.eq.s0 p15,p0 = f8,f9 - nop.i 999 + shr r2 = pow_GR_int_N, 7 } { .mfi - nop.m 999 - fma.s1 POW_pYrcub_e3 = POW_p, POW_Yrcub, POW_e3 - nop.i 999 + and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones + nop.f 999 + and pow_GR_index2 = 0x70, pow_GR_int_N } ;; + + { .mfi - nop.m 999 + shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1 fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0 - nop.i 999 + sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones } { .mfi - nop.m 999 - fma.s1 POW_e12 = POW_e1,f1,POW_e2 - nop.i 999 + addl pow_int_GR_M = 0xFFFF, r2 + fma.s1 POW_e12 = POW_e1,f1,POW_e2 + add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2 } ;; -{ .mfi - add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2 -(p11) fma.d.s0 f8 = f1,f1,f0 // If x=1, result is +1 - nop.i 999 -} -{ .mib -(p12) mov pow_GR_xneg_yodd = 1 - nop.i 999 -(p11) br.ret.spnt b0 // Early exit if x=1.0, result is +1 + +{ .mmi + ldfe POW_T1 = [pow_AD_T1],16 + setf.exp POW_2M = pow_int_GR_M + andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones } ;; -{ .mfi - and pow_GR_index1 = 0x0f, pow_GR_int_N - fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2 - shr pow_int_GR_M = pow_GR_int_N, 7 // M = N/128 -} -{ .mib - and pow_GR_index2 = 0x70, pow_GR_int_N - cmp.eq p6, p0 = pow_GR_xneg_yodd, r0 + +{ .mfb + ldfe POW_T2 = [pow_AD_T2],16 + fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2 (p7) br.ret.spnt b0 // Early exit if y=1.0, result is x } ;; + +// double: p8 TRUE ==> |Y(G + r)| >= 10 +// single: p8 TRUE ==> |Y(G + r)| >= 7 + +// double +// -2^10 -2^9 2^9 2^10 +// -----+-----+----+ ... +-----+-----+----- +// p8 | p9 | p8 +// | | p10 | | +// single +// -2^7 -2^6 2^6 2^7 +// -----+-----+----+ ... +-----+-----+----- +// p8 | p9 | p8 +// | | p10 | | + + { .mfi - shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1 - fma.s1 POW_s = POW_s1, f1, POW_s2 - add pow_int_GR_M = pow_GR_16ones, pow_int_GR_M +(p0) cmp.le.unc p8,p9 = 10, pow_GR_true_exp_Y_Gpr + fma.s1 POW_s = POW_s1, f1, POW_s2 + nop.i 999 } { .mfi - add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2 - fma.s1 POW_f12 = POW_f1, POW_f2,f0 - and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones + nop.m 999 + fma.s1 POW_f12 = POW_f1, POW_f2,f0 + nop.i 999 } ;; -{ .mmi - ldfe POW_T1 = [pow_AD_T1] - ldfe POW_T2 = [pow_AD_T2] - sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones -} -;; { .mfi - setf.exp POW_2M = pow_int_GR_M - fma.s1 POW_e123 = POW_e12, f1, POW_e3 - nop.i 999 -} -{ .mfb -(p6) cmp.gt p6, p0 = -11, pow_GR_true_exp_Y_Gpr - fma.s1 POW_d = POW_GY_Z2, f1, POW_pYrcub_e3 -(p6) br.cond.spnt POW_NEAR_ONE // branch if |y*log(x)| < 2^(-11) + nop.f 999 +(p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr } ;; -{ .mfi + + +{ .mfb nop.m 999 - fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3 - nop.i 999 + fma.s1 POW_e123 = POW_e12, f1, POW_e3 +(p8) br.cond.spnt L(POW_OVER_UNDER_X_NOT_INF) } ;; -// p8 TRUE ==> |Y(G + r)| >= 10 -// double -// -2^10 -2^9 2^9 2^10 -// -----+-----+----+ ... +-----+-----+----- -// p8 | p9 | p8 -// | | p10 | | +{ .mmf + fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3 +} +;; + -// Form signexp of constants to indicate overflow { .mfi - mov pow_GR_big_pos = 0x103ff - fma.s1 POW_ssq = POW_s, POW_s, f0 - cmp.le p8,p9 = 10, pow_GR_true_exp_Y_Gpr + nop.m 999 + fma.s1 POW_ssq = POW_s, POW_s, f0 + nop.i 999 } { .mfi - mov pow_GR_big_neg = 0x303ff - fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2 - andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones + nop.m 999 + fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2 + nop.i 999 } ;; -// Form big positive and negative constants to test for possible overflow { .mfi - setf.exp POW_big_pos = pow_GR_big_pos - fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half -(p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr + nop.m 999 + fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half + nop.i 999 } -{ .mfb - setf.exp POW_big_neg = pow_GR_big_neg - fma.s1 POW_1ps = f1,f1,POW_s -(p8) br.cond.spnt POW_OVER_UNDER_X_NOT_INF +{ .mfi + nop.m 999 + fma.s1 POW_1ps = f1,f1,POW_s + nop.i 999 } ;; -// f123 = f12*(e123+1) = f12*e123+f12 { .mfi nop.m 999 - fma.s1 POW_f123 = POW_e123,POW_f12,POW_f12 + fma.s1 POW_f3 = POW_e123,f1,f1 nop.i 999 } ;; { .mfi nop.m 999 - fma.s1 POW_T1T2 = POW_T1, POW_T2, f0 + fma.s1 POW_T1T2 = POW_T1, POW_T2, f0 nop.i 999 } +;; + { .mfi nop.m 999 - fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4 - cmp.ne p12,p13 = pow_GR_xneg_yodd, r0 + fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4 + nop.i 999 } ;; { .mfi nop.m 999 - fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps + fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps nop.i 999 } { .mfi nop.m 999 - fma.s1 POW_s4 = POW_ssq, POW_ssq, f0 + fma.s1 POW_s4 = POW_ssq, POW_ssq, f0 nop.i 999 } ;; { .mfi nop.m 999 -(p12) fnma.s1 POW_A = POW_2M, POW_f123, f0 + fma.s1 POW_f123 = POW_f12, POW_f3, f0 nop.i 999 } -{ .mfi - nop.m 999 -(p13) fma.s1 POW_A = POW_2M, POW_f123, f0 - cmp.eq p14,p11 = r0,r0 // Initialize p14 on, p11 off -} ;; { .mfi nop.m 999 - fmerge.s POW_abs_q = f0, POW_q // Form |q| so can test its size + fma.s1 POW_A = POW_2M, POW_T1T2, f0 nop.i 999 } ;; + + { .mfi -(p10) cmp.eq p0,p14 = r0,r0 // Turn off p14 if no overflow - fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps + nop.m 999 +(p12) fmerge.s POW_f123 = f8,POW_f123 // if x neg, y odd int nop.i 999 } { .mfi nop.m 999 - fma.s1 POW_A = POW_A, POW_T1T2, f0 +// fma.s1 POW_es = POW_ssq, POW_v3, POW_v2 nop.i 999 } ;; { .mfi -// Test for |q| < 2^-63. If so then reverse last two steps of the result -// to avoid monotonicity problems for results near 1.0 in round up/down/zero. -// p11 will be set if need to reverse the order, p14 if not. nop.m 999 -(p10) fcmp.lt.s0 p11,p14 = POW_abs_q, POW_2toM63 // Test |q| <2^-63 + fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps nop.i 999 } ;; -.pred.rel "mutex",p11,p14 + { .mfi nop.m 999 -(p14) fma.s1 POW_A = POW_A, POW_es, f0 + fma.s1 POW_A = POW_A, POW_f123, f0 nop.i 999 } { .mfi nop.m 999 -(p11) fma.s1 POW_A = POW_A, POW_q, POW_A +// fma.s1 POW_es = POW_es, POW_ssq, POW_1ps nop.i 999 } ;; -// Dummy op to set inexact if |q| < 2^-63 + { .mfi nop.m 999 -(p11) fma.d.s0 POW_tmp = POW_A, POW_q, POW_A + fma.s1 POW_A = POW_A, POW_es,f0 nop.i 999 } ;; -{ .mfi - nop.m 999 -(p14) fma.d.s0 f8 = POW_A, POW_q, POW_A - nop.i 999 -} + + { .mfb nop.m 999 -(p11) fma.d.s0 f8 = POW_A, POW_es, f0 -(p10) br.ret.sptk b0 // Exit main branch if no over/underflow +(p10) fma.d f8 = POW_A, POW_q, POW_A +(p10) br.ret.sptk b0 } ;; + + + + // POSSIBLE_OVER_UNDER -// p6 = TRUE ==> Y_Gpr negative -// Result is already computed. We just need to know if over/underflow occurred. +// p6 = TRUE ==> Y negative -{ .mfb - cmp.eq p0,p6 = pow_GR_sign_Y_Gpr, r0 - nop.f 999 -(p6) br.cond.spnt POW_POSSIBLE_UNDER +{ .mfi + nop.m 999 + fmerge.s POW_abs_A = f0, POW_A + cmp.eq.unc p0,p6 = pow_GR_sign_Y, r0 +} +;; + +{ .mib + nop.m 999 + nop.i 999 +(p6) br.cond.spnt L(POW_POSSIBLE_UNDER) } ;; // POSSIBLE_OVER -// We got an answer. +// We got an answer. // overflow is a possibility, not a certainty @@ -1612,20 +1692,21 @@ POW_COMMON: // RN RN // RZ + // Put in s2 (td set, wre set) { .mfi - nop.m 999 + mov pow_GR_gt_ln = 0x103ff fsetc.s2 0x7F,0x42 - nop.i 999 + nop.i 999 } ;; + { .mfi - nop.m 999 - fma.d.s2 POW_wre_urm_f8 = POW_A, POW_q, POW_A - nop.i 999 + setf.exp POW_gt_pln = pow_GR_gt_ln + fma.d.s2 POW_wre_urm_f8 = POW_abs_A, POW_q, POW_abs_A + nop.i 999 ;; } -;; // Return s2 to default { .mfi @@ -1635,67 +1716,31 @@ POW_COMMON: } ;; + // p7 = TRUE ==> yes, we have an overflow { .mfi nop.m 999 - fcmp.ge.s1 p7, p8 = POW_wre_urm_f8, POW_big_pos + fcmp.ge.unc.s1 p7, p0 = POW_wre_urm_f8, POW_gt_pln nop.i 999 } ;; -{ .mfi - nop.m 999 -(p8) fcmp.le.s1 p7, p0 = POW_wre_urm_f8, POW_big_neg - nop.i 999 -} -;; -{ .mbb -(p7) mov pow_GR_tag = 24 -(p7) br.cond.spnt __libm_error_region // Branch if overflow - br.ret.sptk b0 // Exit if did not overflow -} -;; -// Here if |y*log(x)| < 2^(-11) -// pow(x,y) ~ exp(d) ~ 1 + d + 0.5*d^2 + Q1*d^3 + Q2*d^4, where d = y*log(x) -.align 32 -POW_NEAR_ONE: - -{ .mfi - nop.m 999 - fma.s1 POW_d2 = POW_d, POW_d, f0 - nop.i 999 -} -;; - -{ .mfi - nop.m 999 - fma.s1 POW_poly_d_hi = POW_d, POW_Q0_half, f1 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 POW_poly_d_lo = POW_d, POW_Q2, POW_Q1 - nop.i 999 -} -;; - -{ .mfi - nop.m 999 - fma.s1 POW_poly_d = POW_d2, POW_poly_d_lo, POW_poly_d_hi - nop.i 999 +{ .mfb +(p7) mov pow_GR_tag = 24 + fma.d f8 = POW_A, POW_q, POW_A +(p7) br.cond.spnt __libm_error_region } -;; - { .mfb - nop.m 999 - fma.d.s0 f8 = POW_d, POW_poly_d, f1 - br.ret.sptk b0 // exit function for arguments |y*log(x)| < 2^(-11) + nop.m 999 + nop.f 999 +(p0) br.ret.sptk b0 } ;; -POW_POSSIBLE_UNDER: + +L(POW_POSSIBLE_UNDER): // We got an answer. input was < -2^9 but > -2^10 (double) // We got an answer. input was < -2^6 but > -2^7 (float) // underflow is a possibility, not a certainty @@ -1718,250 +1763,124 @@ POW_POSSIBLE_UNDER: // 0.1...11 2^-3ffe (biased, 1) // largest dn smallest normal + // Put in s2 (td set, ftz set) { .mfi nop.m 999 fsetc.s2 0x7F,0x41 - nop.i 999 + nop.i 999 } ;; + + { .mfi nop.m 999 - fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A + fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A nop.i 999 } ;; + // Return s2 to default { .mfi nop.m 999 fsetc.s2 0x7F,0x40 - nop.i 999 + nop.i 999 } ;; + // p7 = TRUE ==> yes, we have an underflow { .mfi nop.m 999 - fcmp.eq.s1 p7, p0 = POW_ftz_urm_f8, f0 - nop.i 999 + fcmp.eq.unc.s1 p7, p0 = POW_ftz_urm_f8, f0 + nop.i 999 } ;; -{ .mbb -(p7) mov pow_GR_tag = 25 -(p7) br.cond.spnt __libm_error_region // Branch if underflow - br.ret.sptk b0 // Exit if did not underflow -} -;; - -POW_X_DENORM: -// Here if x unorm. Use the NORM_X for getf instructions, and then back -// to normal path -{ .mfi - getf.exp pow_GR_signexp_X = POW_NORM_X - nop.f 999 - nop.i 999 -} -;; -{ .mmi - getf.sig pow_GR_sig_X = POW_NORM_X -;; - and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones - nop.i 999 -} -;; - -{ .mib - sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones - nop.i 999 - br.cond.sptk POW_COMMON -} -;; -POW_X_0: -// Here if x=0 and y not nan -// -// We have the following cases: -// p6 x=0 and y>0 and is an integer (may be even or odd) -// p7 x=0 and y>0 and is NOT an integer, return +0 -// p8 x=0 and y>0 and so big as to always be an even integer, return +0 -// p9 x=0 and y>0 and may not be integer -// p10 x=0 and y>0 and is an odd integer, return x -// p11 x=0 and y>0 and is an even integer, return +0 -// p12 used in dummy fcmp to set denormal flag if y=unorm -// p13 x=0 and y>0 -// p14 x=0 and y=0, branch to code for calling error handling -// p15 x=0 and y<0, branch to code for calling error handling -// -{ .mfi - getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y - fcmp.lt.s1 p15,p13 = f9, f0 // Test for y<0 - and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones -} -{ .mfb - cmp.ne p14,p0 = pow_GR_y_zero,r0 // Test for y=0 - fcvt.xf POW_float_int_Y = POW_int_Y -(p14) br.cond.spnt POW_X_0_Y_0 // Branch if x=0 and y=0 -} -;; -// If x=0 and y>0, test y and flag denormal { .mfb -(p13) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int -(p13) fcmp.eq.s0 p12,p0 = f9,f0 // If x=0, y>0 dummy op to flag denormal -(p15) br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0 +(p7) mov pow_GR_tag = 25 + fma.d f8 = POW_A, POW_q, POW_A +(p7) br.cond.spnt __libm_error_region } ;; -// Here if x=0 and y>0 -{ .mfi - nop.m 999 -(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y // Test y=int - nop.i 999 -} -{ .mfi - nop.m 999 -(p8) fma.d.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0 - nop.i 999 -} -;; -{ .mfi - nop.m 999 -(p7) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y>0 and not integer -(p6) tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd -} -;; - -// Note if x=0, y>0 and odd integer, just return x { .mfb nop.m 999 -(p11) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y even integer - br.ret.sptk b0 // Exit if x=0 and y>0 -} -;; - -POW_X_0_Y_0: -// When X is +-0 and Y is +-0, IEEE returns 1.0 -// We call error support with this value - -{ .mfb - mov pow_GR_tag = 26 - fma.d.s0 f8 = f1,f1,f0 - br.cond.sptk __libm_error_region + nop.f 999 + br.ret.sptk b0 } ;; -POW_X_0_Y_NEG: -// When X is +-0 and Y is negative, IEEE returns -// X Y answer -// +0 -odd int +inf -// -0 -odd int -inf - -// +0 !-odd int +inf -// -0 !-odd int +inf - -// p6 == Y is a floating point number outside the integer. -// Hence it is an integer and is even. -// return +inf - -// p7 == Y is a floating point number within the integer range. -// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even. -// p11 odd -// return (sign_of_x)inf -// p12 even -// return +inf -// p10 == Y is not an integer -// return +inf -// +L(POW_X_DENORM): +// Here if x unorm. Use the NORM_X for getf instructions, and the back +// to normal path { .mfi - nop.m 999 - nop.f 999 - cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033 + getf.exp pow_GR_signexp_X = POW_NORM_X + nop.f 999 + nop.i 999 } ;; { .mfi - mov pow_GR_tag = 27 -(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y - nop.i 999 -} -;; - -{ .mfb - nop.m 999 -(p6) frcpa.s0 f8,p13 = f1, f0 -(p6) br.cond.sptk __libm_error_region // x=0, y<0, y large neg int + getf.sig pow_GR_sig_X = POW_NORM_X + nop.f 999 + nop.i 999 } ;; -{ .mfb - nop.m 999 -(p10) frcpa.s0 f8,p13 = f1, f0 -(p10) br.cond.sptk __libm_error_region // x=0, y<0, y not int +{ .mfi + and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones + nop.f 999 } ;; -// x=0, y<0, y an int { .mib - nop.m 999 -(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0 - nop.b 999 + sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones + shl pow_GR_offset = pow_GR_sig_X, 1 + br.cond.sptk L(POW_COMMON) } ;; -{ .mfi - nop.m 999 -(p12) frcpa.s0 f8,p13 = f1,f0 - nop.i 999 -} -;; + +L(POW_X_0_Y_0): +// When X is +-0 and Y is +-0, IEEE returns 1.0 +// We call error support with this value { .mfb - nop.m 999 -(p11) frcpa.s0 f8,p13 = f1,f8 - br.cond.sptk __libm_error_region + mov pow_GR_tag = 26 + fma.d f8 = f1,f1,f0 + br.cond.sptk __libm_error_region } ;; -POW_Y_0: -// Here for y zero, x anything but zero and nan -// Set flag if x denormal -// Result is +1.0 -{ .mfi - nop.m 999 - fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag if x denormal - nop.i 999 -} -{ .mfb - nop.m 999 - fma.d.s0 f8 = f1,f1,f0 - br.ret.sptk b0 -} -;; -POW_X_INF: -// Here when X is +-inf +L(POW_X_INF): +// When X is +-inf and Y is +-, IEEE returns -// X +inf Y +inf +inf -// X -inf Y +inf +inf +// overflow +// X +inf Y +inf +inf +// X -inf Y +inf +inf -// X +inf Y >0 +inf +// X +inf Y >0 +inf // X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !! -// X -inf Y >0, odd integer -inf +// X -inf Y >0, odd integer -inf -// X +inf Y -inf +0 -// X -inf Y -inf +0 +// underflow +// X +inf Y -inf +0 +// X -inf Y -inf +0 -// X +inf Y <0 +0 -// X -inf Y <0, !odd integer +0 -// X -inf Y <0, odd integer -0 +// X +inf Y <0 +0 +// X -inf Y <0, !odd integer +0 +// X -inf Y <0, odd integer -0 // X + inf Y=+0 +1 // X + inf Y=-0 +1 @@ -1973,30 +1892,32 @@ POW_X_INF: // p6 == Y is a floating point number outside the integer. // Hence it is an integer and is even. -// p13 == (Y negative) +// p13 == (Y negative) // return +inf // p14 == (Y positive) // return +0 + + // p7 == Y is a floating point number within the integer range. // p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even. // p11 odd -// p13 == (Y negative) +// p13 == (Y negative) // return (sign_of_x)inf -// p14 == (Y positive) +// p14 == (Y positive) // return (sign_of_x)0 -// pxx even -// p13 == (Y negative) -// return +inf +// pxx even +// p13 == (Y negative) +// return +inf // p14 == (Y positive) -// return +0 +// return +0 // pxx == Y is not an integer -// p13 == (Y negative) +// p13 == (Y negative) // return +inf // p14 == (Y positive) // return +0 -// +// // If x=inf, test y and flag denormal { .mfi @@ -2008,131 +1929,207 @@ POW_X_INF: { .mfi nop.m 999 - fcmp.lt.s0 p13,p14 = POW_NORM_Y,f0 - cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033 + fcmp.lt p13,p14 = POW_NORM_Y,f0 + cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033 } { .mfi nop.m 999 - fclass.m p12,p0 = f9, 0x23 //@inf + fclass.m p12,p0 = f9, 0x23 nop.i 999 } ;; + { .mfi nop.m 999 - fclass.m p15,p0 = f9, 0x07 //@zero + fclass.m p15,p0 = f9, 0x07 //@zero nop.i 999 } ;; { .mfb nop.m 999 -(p15) fmerge.s f8 = f1,f1 // Return +1.0 if x=inf, y=0 -(p15) br.ret.spnt b0 // Exit if x=inf, y=0 +(p15) fmerge.s f8 = f1,f1 +(p15) br.ret.spnt b0 } ;; + { .mfi - nop.m 999 -(p14) frcpa.s1 f8,p10 = f1,f0 // If x=inf, y>0, assume result +inf +(p13) mov pow_GR_tag = 25 +(p14) frcpa.s1 f8,p10 = f1,f0 nop.i 999 } { .mfb +(p14) mov pow_GR_tag = 24 +(p13) fma.s1 f8 = f0,f0,f0 +(p12) br.ret.spnt b0 +} +;; + + + +{ .mfb nop.m 999 -(p13) fma.d.s0 f8 = f0,f0,f0 // If x=inf, y<0, assume result +0.0 -(p12) br.ret.spnt b0 // Exit if x=inf, y=inf +(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y + nop.b 999 } ;; -// Here if x=inf, and 0 < |y| < inf. Need to correct results if y odd integer. { .mfi nop.m 999 -(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y // Is y integer? - nop.i 999 + nop.f 999 +(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 } ;; +{ .mfb + nop.m 999 +(p11) fmerge.s f8 = POW_NORM_X,f8 + br.ret.sptk b0 +} +;; + + + +L(POW_X_0_Y_NEG): +// When X is +-0 and Y is negative, IEEE returns +// X Y answer +// +0 -odd int +inf +// -0 -odd int -inf + +// +0 !-odd int +inf +// -0 !-odd int +inf + + +// p6 == Y is a floating point number outside the integer. +// Hence it is an integer and is even. +// return +inf + +// p7 == Y is a floating point number within the integer range. +// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even. +// p11 odd +// return (sign_of_x)inf +// p12 even +// return +inf +// p10 == Y is not an integer +// return +inf +// +// + { .mfi nop.m 999 nop.f 999 -(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 // Test for y odd integer + cmp.gt.unc p6,p7 = pow_GR_exp_Y, pow_GR_10033 } ;; + +{ .mfi + mov pow_GR_tag = 27 +(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y + nop.i 999 +} +;; + + { .mfb nop.m 999 -(p11) fmerge.s f8 = POW_NORM_X,f8 // If y odd integer use sign of x - br.ret.sptk b0 // Exit for x=inf, 0 < |y| < inf +(p6) frcpa.s0 f8,p13 = f1, f0 +(p6) br.cond.sptk __libm_error_region } ;; +{ .mfb + nop.m 999 +(p10) frcpa.s0 f8,p13 = f1, f0 +(p10) br.cond.sptk __libm_error_region +} +;; -POW_X_NEG_Y_NONINT: -// When X is negative and Y is a non-integer, IEEE -// returns a qnan indefinite. -// We call error support with this value -{ .mfb - mov pow_GR_tag = 28 - frcpa.s0 f8,p6 = f0,f0 - br.cond.sptk __libm_error_region + +{ .mib + nop.m 999 +(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0 + nop.b 999 } ;; -POW_X_NAN: -// Here if x=nan, y not nan + + { .mfi - nop.m 999 - fclass.m p9,p13 = f9, 0x07 // Test y=zero - nop.i 999 + nop.m 999 +(p12) frcpa.s0 f8,p13 = f1,f0 + nop.i 999 +} +;; + +{ .mfb + nop.m 999 +(p11) frcpa f8,p13 = f1,f8 + br.cond.sptk __libm_error_region } ;; + + + +L(POW_X_NEG_Y_NONINT): +// When X is negative and Y is a non-integer, IEEE +// returns a qnan indefinite. +// We call error support with this value + { .mfb - nop.m 999 -(p13) fma.d.s0 f8 = f8,f1,f0 -(p13) br.ret.sptk b0 // Exit if x nan, y anything but zero or nan + mov pow_GR_tag = 28 + frcpa f8,p6 = f0,f0 + br.cond.sptk __libm_error_region } ;; -POW_X_NAN_Y_0: + + + +L(POW_X_NAN_Y_0): // When X is a NAN and Y is zero, IEEE returns 1. // We call error support with this value. + { .mfi - nop.m 999 - fcmp.eq.s0 p6,p0 = f8,f0 // Dummy op to set invalid on snan - nop.i 999 + nop.m 0 + fma.d.s0 f10 = f8,f1,f0 + nop.i 0 } { .mfb - mov pow_GR_tag = 29 - fma.d.s0 f8 = f0,f0,f1 + mov pow_GR_tag = 29 + fma.d.s0 f8 = f0,f0,f1 br.cond.sptk __libm_error_region } ;; -POW_OVER_UNDER_X_NOT_INF: +L(POW_OVER_UNDER_X_NOT_INF): // p8 is TRUE for overflow // p9 is TRUE for underflow // if y is infinity, we should not over/underflow + { .mfi nop.m 999 - fcmp.eq.s1 p14, p13 = POW_xsq,f1 // Test |x|=1 - cmp.eq p8,p9 = pow_GR_sign_Y_Gpr, r0 + fcmp.eq.unc.s1 p14, p13 = POW_xsq,f1 + cmp.eq.unc p8,p9 = pow_GR_sign_Y_Gpr, r0 } ;; { .mfi nop.m 999 -(p14) fclass.m.unc p15, p0 = f9, 0x23 // If |x|=1, test y=inf +(p14) fclass.m.unc p15, p0 = f9, 0x23 nop.i 999 } { .mfi nop.m 999 -(p13) fclass.m.unc p11,p0 = f9, 0x23 // If |x| not 1, test y=inf +(p13) fclass.m.unc p11,p0 = f9, 0x23 nop.i 999 } ;; @@ -2140,33 +2137,31 @@ POW_OVER_UNDER_X_NOT_INF: // p15 = TRUE if |x|=1, y=inf, return +1 { .mfb nop.m 999 -(p15) fma.d.s0 f8 = f1,f1,f0 // If |x|=1, y=inf, result +1 -(p15) br.ret.spnt b0 // Exit if |x|=1, y=inf +(p15) fma.d f8 = f1,f1,f0 +(p15) br.ret.spnt b0 } ;; .pred.rel "mutex",p8,p9 { .mfb -(p8) setf.exp f8 = pow_GR_17ones // If exp(+big), result inf -(p9) fmerge.s f8 = f0,f0 // If exp(-big), result 0 -(p11) br.ret.sptk b0 // Exit if |x| not 1, y=inf +(p8) setf.exp f8 = pow_GR_17ones +(p9) fmerge.s f8 = f0,f0 +(p11) br.ret.sptk b0 } -;; { .mfb nop.m 999 nop.f 999 - br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf + br.cond.sptk L(POW_OVER_UNDER_ERROR) } ;; +L(POW_Y_NAN): -POW_Y_NAN: -// Here if y=nan, x anything -// If x = +1 then result is +1, else result is quiet Y +// Is x = +1 then result is +1, else result is quiet Y { .mfi nop.m 999 - fcmp.eq.s1 p10,p9 = POW_NORM_X, f1 + fcmp.eq.s1 p10,p9 = POW_NORM_X, f1 nop.i 999 } ;; @@ -2180,118 +2175,148 @@ POW_Y_NAN: { .mfi nop.m 999 -(p10) fma.d.s0 f8 = f1,f1,f0 +(p10) fma.d f8 = f1,f1,f0 nop.i 999 } { .mfb nop.m 999 -(p9) fma.d.s0 f8 = f9,f8,f0 - br.ret.sptk b0 // Exit y=nan +(p9) fma.d f8 = f9,f8,f0 + br.ret.sptk b0 } ;; -POW_OVER_UNDER_ERROR: -// Here if we have overflow or underflow. -// Enter with p12 true if x negative and y odd int to force -0 or -inf +L(POW_OVER_UNDER_ERROR): { .mfi - sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1 - nop.f 999 - mov pow_GR_one = 0x1 + nop.m 999 + fmerge.s f10 = POW_NORM_X,POW_NORM_X + nop.i 999 +} +{ .mfi + sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1 + nop.f 999 + mov pow_GR_one = 0x1 } ;; -// overflow, force inf with O flag +// overflow { .mmb -(p8) mov pow_GR_tag = 24 -(p8) setf.exp POW_tmp = pow_GR_17ones_m1 +(p8) mov pow_GR_tag = 24 +(p8) setf.exp f11 = pow_GR_17ones_m1 nop.b 999 } ;; -// underflow, force zero with I, U flags + +// underflow { .mmi -(p9) mov pow_GR_tag = 25 -(p9) setf.exp POW_tmp = pow_GR_one +(p9) mov pow_GR_tag = 25 +(p9) setf.exp f11 = pow_GR_one nop.i 999 } ;; + +// p12 x is negative and y is an odd integer + + { .mfi nop.m 999 - fma.d.s0 f8 = POW_tmp, POW_tmp, f0 + fma.d f8 = f11, f11, f0 nop.i 999 } ;; -// p12 x is negative and y is an odd integer, change sign of result { .mfi nop.m 999 -(p12) fnma.d.s0 f8 = POW_tmp, POW_tmp, f0 +(p12) fmerge.ns f8 = f8, f8 nop.i 999 } ;; -GLOBAL_LIBM_END(pow) + +.endp pow +ASM_SIZE_DIRECTIVE(pow) + + +// Stack operations when calling error support. +// (1) (2) (3) (call) (4) +// sp -> + psp -> + psp -> + sp -> + +// | | | | +// | | <- GR_Y R3 ->| <- GR_RESULT | -> f8 +// | | | | +// | <-GR_Y Y2->| Y2 ->| <- GR_Y | +// | | | | +// | | <- GR_X X1 ->| | +// | | | | +// sp-64 -> + sp -> + sp -> + + +// save ar.pfs save b0 restore gp +// save gp restore ar.pfs -LOCAL_LIBM_ENTRY(__libm_error_region) +.proc __libm_error_region +__libm_error_region: + +// Answer is inf for overflow and 0 for underflow. .prologue +// (1) { .mfi - add GR_Parameter_Y=-32,sp // Parameter 2 value + add GR_Parameter_Y=-32,sp // Parameter 2 value nop.f 0 .save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs // Save ar.pfs + mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } { .mfi .fframe 64 - add sp=-64,sp // Create new stack + add sp=-64,sp // Create new stack nop.f 0 - mov GR_SAVE_GP=gp // Save gp + mov GR_SAVE_GP=gp // Save gp };; + +// (2) { .mmi stfd [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack - add GR_Parameter_X = 16,sp // Parameter 1 address + add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 // Save b0 + mov GR_SAVE_B0=b0 // Save b0 };; .body +// (3) { .mib - stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack + stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address - nop.b 0 + nop.b 0 } { .mib - stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack + stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function + br.call.sptk b0=__libm_error_support# // Call error handling function };; - { .mmi - add GR_Parameter_RESULT = 48,sp nop.m 0 - nop.i 0 + nop.m 0 + add GR_Parameter_RESULT = 48,sp };; +// (4) { .mmi - ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack + ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack .restore sp - add sp = 64,sp // Restore stack pointer - mov b0 = GR_SAVE_B0 // Restore return address + add sp = 64,sp // Restore stack pointer + mov b0 = GR_SAVE_B0 // Restore return address };; - { .mib - mov gp = GR_SAVE_GP // Restore gp - mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs - br.ret.sptk b0 // Return + mov gp = GR_SAVE_GP // Restore gp + mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs + br.ret.sptk b0 // Return };; -LOCAL_LIBM_END(__libm_error_region) +.endp __libm_error_region +ASM_SIZE_DIRECTIVE(__libm_error_region) .type __libm_error_support#,@function .global __libm_error_support# - |