aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/generic/unwind-dw2-fde.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/generic/unwind-dw2-fde.c')
-rw-r--r--sysdeps/generic/unwind-dw2-fde.c1079
1 files changed, 0 insertions, 1079 deletions
diff --git a/sysdeps/generic/unwind-dw2-fde.c b/sysdeps/generic/unwind-dw2-fde.c
deleted file mode 100644
index 104a2552b4..0000000000
--- a/sysdeps/generic/unwind-dw2-fde.c
+++ /dev/null
@@ -1,1079 +0,0 @@
-/* Subroutines needed for unwinding stack frames for exception handling. */
-/* Copyright (C) 1997-2017 Free Software Foundation, Inc.
- Contributed by Jason Merrill <jason@cygnus.com>.
-
- This file is part of the GNU C Library.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#ifdef _LIBC
-# include <shlib-compat.h>
-#endif
-
-#if !defined _LIBC || SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_2_5)
-
-#ifdef _LIBC
-#include <stdlib.h>
-#include <string.h>
-#include <libc-lock.h>
-#include <dwarf2.h>
-#include <unwind.h>
-#define NO_BASE_OF_ENCODED_VALUE
-#include <unwind-pe.h>
-#include <unwind-dw2-fde.h>
-#else
-#ifndef _Unwind_Find_FDE
-#include "tconfig.h"
-#include "tsystem.h"
-#include "dwarf2.h"
-#include "unwind.h"
-#define NO_BASE_OF_ENCODED_VALUE
-#include "unwind-pe.h"
-#include "unwind-dw2-fde.h"
-#include "gthr.h"
-#endif
-#endif
-
-/* The unseen_objects list contains objects that have been registered
- but not yet categorized in any way. The seen_objects list has had
- it's pc_begin and count fields initialized at minimum, and is sorted
- by decreasing value of pc_begin. */
-static struct object *unseen_objects;
-static struct object *seen_objects;
-
-#ifdef _LIBC
-
-__libc_lock_define_initialized (static, object_mutex)
-#define init_object_mutex_once()
-#define __gthread_mutex_lock(m) __libc_lock_lock (*(m))
-#define __gthread_mutex_unlock(m) __libc_lock_unlock (*(m))
-
-void __register_frame_info_bases (void *begin, struct object *ob,
- void *tbase, void *dbase);
-hidden_proto (__register_frame_info_bases)
-void __register_frame_info_table_bases (void *begin,
- struct object *ob,
- void *tbase, void *dbase);
-hidden_proto (__register_frame_info_table_bases)
-void *__deregister_frame_info_bases (void *begin);
-hidden_proto (__deregister_frame_info_bases)
-
-#else
-
-#ifdef __GTHREAD_MUTEX_INIT
-static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
-#else
-static __gthread_mutex_t object_mutex;
-#endif
-
-#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
-static void
-init_object_mutex (void)
-{
- __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
-}
-
-static void
-init_object_mutex_once (void)
-{
- static __gthread_once_t once = __GTHREAD_ONCE_INIT;
- __gthread_once (&once, init_object_mutex);
-}
-#else
-#define init_object_mutex_once()
-#endif
-
-#endif /* _LIBC */
-
-/* Called from crtbegin.o to register the unwind info for an object. */
-
-void
-__register_frame_info_bases (void *begin, struct object *ob,
- void *tbase, void *dbase)
-{
- /* If .eh_frame is empty, don't register at all. */
- if (*(uword *) begin == 0)
- return;
-
- ob->pc_begin = (void *)-1;
- ob->tbase = tbase;
- ob->dbase = dbase;
- ob->u.single = begin;
- ob->s.i = 0;
- ob->s.b.encoding = DW_EH_PE_omit;
-#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
- ob->fde_end = NULL;
-#endif
-
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
-
- ob->next = unseen_objects;
- unseen_objects = ob;
-
- __gthread_mutex_unlock (&object_mutex);
-}
-hidden_def (__register_frame_info_bases)
-
-void
-__register_frame_info (void *begin, struct object *ob)
-{
- __register_frame_info_bases (begin, ob, 0, 0);
-}
-
-void
-__register_frame (void *begin)
-{
- struct object *ob;
-
- /* If .eh_frame is empty, don't register at all. */
- if (*(uword *) begin == 0)
- return;
-
- ob = (struct object *) malloc (sizeof (struct object));
- __register_frame_info_bases (begin, ob, 0, 0);
-}
-
-/* Similar, but BEGIN is actually a pointer to a table of unwind entries
- for different translation units. Called from the file generated by
- collect2. */
-
-void
-__register_frame_info_table_bases (void *begin, struct object *ob,
- void *tbase, void *dbase)
-{
- ob->pc_begin = (void *)-1;
- ob->tbase = tbase;
- ob->dbase = dbase;
- ob->u.array = begin;
- ob->s.i = 0;
- ob->s.b.from_array = 1;
- ob->s.b.encoding = DW_EH_PE_omit;
-
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
-
- ob->next = unseen_objects;
- unseen_objects = ob;
-
- __gthread_mutex_unlock (&object_mutex);
-}
-hidden_def (__register_frame_info_table_bases)
-
-void
-__register_frame_info_table (void *begin, struct object *ob)
-{
- __register_frame_info_table_bases (begin, ob, 0, 0);
-}
-
-void
-__register_frame_table (void *begin)
-{
- struct object *ob = (struct object *) malloc (sizeof (struct object));
- __register_frame_info_table_bases (begin, ob, 0, 0);
-}
-
-/* Called from crtbegin.o to deregister the unwind info for an object. */
-/* ??? Glibc has for a while now exported __register_frame_info and
- __deregister_frame_info. If we call __register_frame_info_bases
- from crtbegin (wherein it is declared weak), and this object does
- not get pulled from libgcc.a for other reasons, then the
- invocation of __deregister_frame_info will be resolved from glibc.
- Since the registration did not happen there, we'll abort.
-
- Therefore, declare a new deregistration entry point that does the
- exact same thing, but will resolve to the same library as
- implements __register_frame_info_bases. */
-
-void *
-__deregister_frame_info_bases (void *begin)
-{
- struct object **p;
- struct object *ob = 0;
- struct fde_vector *tofree = NULL;
-
- /* If .eh_frame is empty, we haven't registered. */
- if (*(uword *) begin == 0)
- return ob;
-
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
-
- for (p = &unseen_objects; *p ; p = &(*p)->next)
- if ((*p)->u.single == begin)
- {
- ob = *p;
- *p = ob->next;
- goto out;
- }
-
- for (p = &seen_objects; *p ; p = &(*p)->next)
- if ((*p)->s.b.sorted)
- {
- if ((*p)->u.sort->orig_data == begin)
- {
- ob = *p;
- *p = ob->next;
- tofree = ob->u.sort;
- goto out;
- }
- }
- else
- {
- if ((*p)->u.single == begin)
- {
- ob = *p;
- *p = ob->next;
- goto out;
- }
- }
-
- __gthread_mutex_unlock (&object_mutex);
- abort ();
-
- out:
- __gthread_mutex_unlock (&object_mutex);
- free (tofree);
- return (void *) ob;
-}
-hidden_def (__deregister_frame_info_bases)
-
-void *
-__deregister_frame_info (void *begin)
-{
- return __deregister_frame_info_bases (begin);
-}
-
-void
-__deregister_frame (void *begin)
-{
- /* If .eh_frame is empty, we haven't registered. */
- if (*(uword *) begin != 0)
- free (__deregister_frame_info_bases (begin));
-}
-
-
-/* Like base_of_encoded_value, but take the base from a struct object
- instead of an _Unwind_Context. */
-
-static _Unwind_Ptr
-base_from_object (unsigned char encoding, struct object *ob)
-{
- if (encoding == DW_EH_PE_omit)
- return 0;
-
- switch (encoding & 0x70)
- {
- case DW_EH_PE_absptr:
- case DW_EH_PE_pcrel:
- case DW_EH_PE_aligned:
- return 0;
-
- case DW_EH_PE_textrel:
- return (_Unwind_Ptr) ob->tbase;
- case DW_EH_PE_datarel:
- return (_Unwind_Ptr) ob->dbase;
- }
- abort ();
-}
-
-/* Return the FDE pointer encoding from the CIE. */
-/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
-
-static int
-get_cie_encoding (struct dwarf_cie *cie)
-{
- const unsigned char *aug, *p;
- _Unwind_Ptr dummy;
- _Unwind_Word utmp;
- _Unwind_Sword stmp;
-
- aug = cie->augmentation;
- if (aug[0] != 'z')
- return DW_EH_PE_absptr;
-
- /* Skip the augmentation string. */
- p = aug + strlen ((const char *) aug) + 1;
- p = read_uleb128 (p, &utmp); /* Skip code alignment. */
- p = read_sleb128 (p, &stmp); /* Skip data alignment. */
- p++; /* Skip return address column. */
-
- aug++; /* Skip 'z' */
- p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
- while (1)
- {
- /* This is what we're looking for. */
- if (*aug == 'R')
- return *p;
- /* Personality encoding and pointer. */
- else if (*aug == 'P')
- {
- /* ??? Avoid dereferencing indirect pointers, since we're
- faking the base address. Gotta keep DW_EH_PE_aligned
- intact, however. */
- p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
- }
- /* LSDA encoding. */
- else if (*aug == 'L')
- p++;
- /* Otherwise end of string, or unknown augmentation. */
- else
- return DW_EH_PE_absptr;
- aug++;
- }
-}
-
-static inline int
-get_fde_encoding (struct dwarf_fde *f)
-{
- return get_cie_encoding (get_cie (f));
-}
-
-
-/* Sorting an array of FDEs by address.
- (Ideally we would have the linker sort the FDEs so we don't have to do
- it at run time. But the linkers are not yet prepared for this.) */
-
-/* Return the Nth pc_begin value from FDE x. */
-
-static inline _Unwind_Ptr
-get_pc_begin (fde *x, size_t n)
-{
- _Unwind_Ptr p;
- memcpy (&p, x->pc_begin + n * sizeof (_Unwind_Ptr), sizeof (_Unwind_Ptr));
- return p;
-}
-
-/* Comparison routines. Three variants of increasing complexity. */
-
-static int
-fde_unencoded_compare (struct object *ob __attribute__((unused)),
- fde *x, fde *y)
-{
- _Unwind_Ptr x_ptr = get_pc_begin (x, 0);
- _Unwind_Ptr y_ptr = get_pc_begin (y, 0);
-
- if (x_ptr > y_ptr)
- return 1;
- if (x_ptr < y_ptr)
- return -1;
- return 0;
-}
-
-static int
-fde_single_encoding_compare (struct object *ob, fde *x, fde *y)
-{
- _Unwind_Ptr base, x_ptr, y_ptr;
-
- base = base_from_object (ob->s.b.encoding, ob);
- read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
- read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
-
- if (x_ptr > y_ptr)
- return 1;
- if (x_ptr < y_ptr)
- return -1;
- return 0;
-}
-
-static int
-fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y)
-{
- int x_encoding, y_encoding;
- _Unwind_Ptr x_ptr, y_ptr;
-
- x_encoding = get_fde_encoding (x);
- read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
- x->pc_begin, &x_ptr);
-
- y_encoding = get_fde_encoding (y);
- read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
- y->pc_begin, &y_ptr);
-
- if (x_ptr > y_ptr)
- return 1;
- if (x_ptr < y_ptr)
- return -1;
- return 0;
-}
-
-typedef int (*fde_compare_t) (struct object *, fde *, fde *);
-
-
-/* This is a special mix of insertion sort and heap sort, optimized for
- the data sets that actually occur. They look like
- 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
- I.e. a linearly increasing sequence (coming from functions in the text
- section), with additionally a few unordered elements (coming from functions
- in gnu_linkonce sections) whose values are higher than the values in the
- surrounding linear sequence (but not necessarily higher than the values
- at the end of the linear sequence!).
- The worst-case total run time is O(N) + O(n log (n)), where N is the
- total number of FDEs and n is the number of erratic ones. */
-
-struct fde_accumulator
-{
- struct fde_vector *linear;
- struct fde_vector *erratic;
-};
-
-static int
-start_fde_sort (struct fde_accumulator *accu, size_t count)
-{
- size_t size;
- if (! count)
- return 0;
-
- size = sizeof (struct fde_vector) + sizeof (fde *) * count;
- if ((accu->linear = (struct fde_vector *) malloc (size)))
- {
- accu->linear->count = 0;
- if ((accu->erratic = (struct fde_vector *) malloc (size)))
- accu->erratic->count = 0;
- return 1;
- }
- else
- return 0;
-}
-
-static inline void
-fde_insert (struct fde_accumulator *accu, fde *this_fde)
-{
- if (accu->linear)
- accu->linear->array[accu->linear->count++] = this_fde;
-}
-
-/* Split LINEAR into a linear sequence with low values and an erratic
- sequence with high values, put the linear one (of longest possible
- length) into LINEAR and the erratic one into ERRATIC. This is O(N).
-
- Because the longest linear sequence we are trying to locate within the
- incoming LINEAR array can be interspersed with (high valued) erratic
- entries. We construct a chain indicating the sequenced entries.
- To avoid having to allocate this chain, we overlay it onto the space of
- the ERRATIC array during construction. A final pass iterates over the
- chain to determine what should be placed in the ERRATIC array, and
- what is the linear sequence. This overlay is safe from aliasing. */
-
-static void
-fde_split (struct object *ob, fde_compare_t fde_compare,
- struct fde_vector *linear, struct fde_vector *erratic)
-{
- static fde *marker;
- size_t count = linear->count;
- fde **chain_end = &marker;
- size_t i, j, k;
-
- /* This should optimize out, but it is wise to make sure this assumption
- is correct. Should these have different sizes, we cannot cast between
- them and the overlaying onto ERRATIC will not work. */
- if (sizeof (fde *) != sizeof (fde **))
- abort ();
-
- for (i = 0; i < count; i++)
- {
- fde **probe;
-
- for (probe = chain_end;
- probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
- probe = chain_end)
- {
- chain_end = (fde **) erratic->array[probe - linear->array];
- erratic->array[probe - linear->array] = NULL;
- }
- erratic->array[i] = (fde *) chain_end;
- chain_end = &linear->array[i];
- }
-
- /* Each entry in LINEAR which is part of the linear sequence we have
- discovered will correspond to a non-NULL entry in the chain we built in
- the ERRATIC array. */
- for (i = j = k = 0; i < count; i++)
- if (erratic->array[i])
- linear->array[j++] = linear->array[i];
- else
- erratic->array[k++] = linear->array[i];
- linear->count = j;
- erratic->count = k;
-}
-
-/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
- use a name that does not conflict. */
-
-static void
-frame_heapsort (struct object *ob, fde_compare_t fde_compare,
- struct fde_vector *erratic)
-{
- /* For a description of this algorithm, see:
- Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
- p. 60-61. */
- fde ** a = erratic->array;
- /* A portion of the array is called a "heap" if for all i>=0:
- If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
- If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
-#define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
- size_t n = erratic->count;
- size_t m = n;
- size_t i;
-
- while (m > 0)
- {
- /* Invariant: a[m..n-1] is a heap. */
- m--;
- for (i = m; 2*i+1 < n; )
- {
- if (2*i+2 < n
- && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
- && fde_compare (ob, a[2*i+2], a[i]) > 0)
- {
- SWAP (a[i], a[2*i+2]);
- i = 2*i+2;
- }
- else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
- {
- SWAP (a[i], a[2*i+1]);
- i = 2*i+1;
- }
- else
- break;
- }
- }
- while (n > 1)
- {
- /* Invariant: a[0..n-1] is a heap. */
- n--;
- SWAP (a[0], a[n]);
- for (i = 0; 2*i+1 < n; )
- {
- if (2*i+2 < n
- && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
- && fde_compare (ob, a[2*i+2], a[i]) > 0)
- {
- SWAP (a[i], a[2*i+2]);
- i = 2*i+2;
- }
- else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
- {
- SWAP (a[i], a[2*i+1]);
- i = 2*i+1;
- }
- else
- break;
- }
- }
-#undef SWAP
-}
-
-/* Merge V1 and V2, both sorted, and put the result into V1. */
-static void
-fde_merge (struct object *ob, fde_compare_t fde_compare,
- struct fde_vector *v1, struct fde_vector *v2)
-{
- size_t i1, i2;
- fde * fde2;
-
- i2 = v2->count;
- if (i2 > 0)
- {
- i1 = v1->count;
- do
- {
- i2--;
- fde2 = v2->array[i2];
- while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
- {
- v1->array[i1+i2] = v1->array[i1-1];
- i1--;
- }
- v1->array[i1+i2] = fde2;
- }
- while (i2 > 0);
- v1->count += v2->count;
- }
-}
-
-static void
-end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
-{
- fde_compare_t fde_compare;
-
- if (accu->linear->count != count)
- abort ();
-
- if (ob->s.b.mixed_encoding)
- fde_compare = fde_mixed_encoding_compare;
- else if (ob->s.b.encoding == DW_EH_PE_absptr)
- fde_compare = fde_unencoded_compare;
- else
- fde_compare = fde_single_encoding_compare;
-
- if (accu->erratic)
- {
- fde_split (ob, fde_compare, accu->linear, accu->erratic);
- if (accu->linear->count + accu->erratic->count != count)
- abort ();
- frame_heapsort (ob, fde_compare, accu->erratic);
- fde_merge (ob, fde_compare, accu->linear, accu->erratic);
- free (accu->erratic);
- }
- else
- {
- /* We've not managed to malloc an erratic array,
- so heap sort in the linear one. */
- frame_heapsort (ob, fde_compare, accu->linear);
- }
-}
-
-
-/* Update encoding, mixed_encoding, and pc_begin for OB for the
- fde array beginning at THIS_FDE. Return the number of fdes
- encountered along the way. */
-
-static size_t
-classify_object_over_fdes (struct object *ob, fde *this_fde)
-{
- struct dwarf_cie *last_cie = 0;
- size_t count = 0;
- int encoding = DW_EH_PE_absptr;
- _Unwind_Ptr base = 0;
-
- for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
- {
- struct dwarf_cie *this_cie;
- _Unwind_Ptr mask, pc_begin;
-
- /* Skip CIEs. */
- if (this_fde->CIE_delta == 0)
- continue;
-
- /* Determine the encoding for this FDE. Note mixed encoded
- objects for later. */
- this_cie = get_cie (this_fde);
- if (this_cie != last_cie)
- {
- last_cie = this_cie;
- encoding = get_cie_encoding (this_cie);
- base = base_from_object (encoding, ob);
- if (ob->s.b.encoding == DW_EH_PE_omit)
- ob->s.b.encoding = encoding;
- else if (ob->s.b.encoding != encoding)
- ob->s.b.mixed_encoding = 1;
- }
-
- read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
- &pc_begin);
-
- /* Take care to ignore link-once functions that were removed.
- In these cases, the function address will be NULL, but if
- the encoding is smaller than a pointer a true NULL may not
- be representable. Assume 0 in the representable bits is NULL. */
- mask = size_of_encoded_value (encoding);
- if (mask < sizeof (void *))
- mask = (1L << (mask << 3)) - 1;
- else
- mask = -1;
-
- if ((pc_begin & mask) == 0)
- continue;
-
- count += 1;
- if ((void *) pc_begin < ob->pc_begin)
- ob->pc_begin = (void *) pc_begin;
- }
-
- return count;
-}
-
-static void
-add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde)
-{
- struct dwarf_cie *last_cie = 0;
- int encoding = ob->s.b.encoding;
- _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
-
- for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
- {
- struct dwarf_cie *this_cie;
-
- /* Skip CIEs. */
- if (this_fde->CIE_delta == 0)
- continue;
-
- if (ob->s.b.mixed_encoding)
- {
- /* Determine the encoding for this FDE. Note mixed encoded
- objects for later. */
- this_cie = get_cie (this_fde);
- if (this_cie != last_cie)
- {
- last_cie = this_cie;
- encoding = get_cie_encoding (this_cie);
- base = base_from_object (encoding, ob);
- }
- }
-
- if (encoding == DW_EH_PE_absptr)
- {
- if (get_pc_begin (this_fde, 0) == 0)
- continue;
- }
- else
- {
- _Unwind_Ptr pc_begin, mask;
-
- read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
- &pc_begin);
-
- /* Take care to ignore link-once functions that were removed.
- In these cases, the function address will be NULL, but if
- the encoding is smaller than a pointer a true NULL may not
- be representable. Assume 0 in the representable bits is NULL. */
- mask = size_of_encoded_value (encoding);
- if (mask < sizeof (void *))
- mask = (1L << (mask << 3)) - 1;
- else
- mask = -1;
-
- if ((pc_begin & mask) == 0)
- continue;
- }
-
- fde_insert (accu, this_fde);
- }
-}
-
-/* Set up a sorted array of pointers to FDEs for a loaded object. We
- count up the entries before allocating the array because it's likely to
- be faster. We can be called multiple times, should we have failed to
- allocate a sorted fde array on a previous occasion. */
-
-static void
-init_object (struct object* ob)
-{
- struct fde_accumulator accu;
- size_t count;
-
- count = ob->s.b.count;
- if (count == 0)
- {
- if (ob->s.b.from_array)
- {
- fde **p = ob->u.array;
- for (count = 0; *p; ++p)
- count += classify_object_over_fdes (ob, *p);
- }
- else
- count = classify_object_over_fdes (ob, ob->u.single);
-
- /* The count field we have in the main struct object is somewhat
- limited, but should suffice for virtually all cases. If the
- counted value doesn't fit, re-write a zero. The worst that
- happens is that we re-count next time -- admittedly non-trivial
- in that this implies some 2M fdes, but at least we function. */
- ob->s.b.count = count;
- if (ob->s.b.count != count)
- ob->s.b.count = 0;
- }
-
- if (!start_fde_sort (&accu, count))
- return;
-
- if (ob->s.b.from_array)
- {
- fde **p;
- for (p = ob->u.array; *p; ++p)
- add_fdes (ob, &accu, *p);
- }
- else
- add_fdes (ob, &accu, ob->u.single);
-
- end_fde_sort (ob, &accu, count);
-
- /* Save the original fde pointer, since this is the key by which the
- DSO will deregister the object. */
- accu.linear->orig_data = ob->u.single;
- ob->u.sort = accu.linear;
-
- ob->s.b.sorted = 1;
-}
-
-/* A linear search through a set of FDEs for the given PC. This is
- used when there was insufficient memory to allocate and sort an
- array. */
-
-static fde *
-linear_search_fdes (struct object *ob, fde *this_fde, void *pc)
-{
- struct dwarf_cie *last_cie = 0;
- int encoding = ob->s.b.encoding;
- _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
-
- for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
- {
- struct dwarf_cie *this_cie;
- _Unwind_Ptr pc_begin, pc_range;
-
- /* Skip CIEs. */
- if (this_fde->CIE_delta == 0)
- continue;
-
- if (ob->s.b.mixed_encoding)
- {
- /* Determine the encoding for this FDE. Note mixed encoded
- objects for later. */
- this_cie = get_cie (this_fde);
- if (this_cie != last_cie)
- {
- last_cie = this_cie;
- encoding = get_cie_encoding (this_cie);
- base = base_from_object (encoding, ob);
- }
- }
-
- if (encoding == DW_EH_PE_absptr)
- {
- pc_begin = get_pc_begin (this_fde, 0);
- pc_range = get_pc_begin (this_fde, 1);
- if (pc_begin == 0)
- continue;
- }
- else
- {
- _Unwind_Ptr mask;
- const unsigned char *p;
-
- p = read_encoded_value_with_base (encoding, base,
- this_fde->pc_begin, &pc_begin);
- read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
-
- /* Take care to ignore link-once functions that were removed.
- In these cases, the function address will be NULL, but if
- the encoding is smaller than a pointer a true NULL may not
- be representable. Assume 0 in the representable bits is NULL. */
- mask = size_of_encoded_value (encoding);
- if (mask < sizeof (void *))
- mask = (1L << (mask << 3)) - 1;
- else
- mask = -1;
-
- if ((pc_begin & mask) == 0)
- continue;
- }
-
- if ((_Unwind_Ptr) pc - pc_begin < pc_range)
- return this_fde;
- }
-
- return NULL;
-}
-
-/* Binary search for an FDE containing the given PC. Here are three
- implementations of increasing complexity. */
-
-static fde *
-binary_search_unencoded_fdes (struct object *ob, void *pc)
-{
- struct fde_vector *vec = ob->u.sort;
- size_t lo, hi;
-
- for (lo = 0, hi = vec->count; lo < hi; )
- {
- size_t i = (lo + hi) / 2;
- fde *f = vec->array[i];
- void *pc_begin;
- uaddr pc_range;
-
- pc_begin = (void *) get_pc_begin (f, 0);
- pc_range = (uaddr) get_pc_begin (f, 1);
-
- if (pc < pc_begin)
- hi = i;
- else if (pc >= pc_begin + pc_range)
- lo = i + 1;
- else
- return f;
- }
-
- return NULL;
-}
-
-static fde *
-binary_search_single_encoding_fdes (struct object *ob, void *pc)
-{
- struct fde_vector *vec = ob->u.sort;
- int encoding = ob->s.b.encoding;
- _Unwind_Ptr base = base_from_object (encoding, ob);
- size_t lo, hi;
-
- for (lo = 0, hi = vec->count; lo < hi; )
- {
- size_t i = (lo + hi) / 2;
- fde *f = vec->array[i];
- _Unwind_Ptr pc_begin, pc_range;
- const unsigned char *p;
-
- p = read_encoded_value_with_base (encoding, base, f->pc_begin,
- &pc_begin);
- read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
-
- if ((_Unwind_Ptr) pc < pc_begin)
- hi = i;
- else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
- lo = i + 1;
- else
- return f;
- }
-
- return NULL;
-}
-
-static fde *
-binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
-{
- struct fde_vector *vec = ob->u.sort;
- size_t lo, hi;
-
- for (lo = 0, hi = vec->count; lo < hi; )
- {
- size_t i = (lo + hi) / 2;
- fde *f = vec->array[i];
- _Unwind_Ptr pc_begin, pc_range;
- const unsigned char *p;
- int encoding;
-
- encoding = get_fde_encoding (f);
- p = read_encoded_value_with_base (encoding,
- base_from_object (encoding, ob),
- f->pc_begin, &pc_begin);
- read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
-
- if ((_Unwind_Ptr) pc < pc_begin)
- hi = i;
- else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
- lo = i + 1;
- else
- return f;
- }
-
- return NULL;
-}
-
-static fde *
-search_object (struct object* ob, void *pc)
-{
- /* If the data hasn't been sorted, try to do this now. We may have
- more memory available than last time we tried. */
- if (! ob->s.b.sorted)
- {
- init_object (ob);
-
- /* Despite the above comment, the normal reason to get here is
- that we've not processed this object before. A quick range
- check is in order. */
- if (pc < ob->pc_begin)
- return NULL;
- }
-
- if (ob->s.b.sorted)
- {
- if (ob->s.b.mixed_encoding)
- return binary_search_mixed_encoding_fdes (ob, pc);
- else if (ob->s.b.encoding == DW_EH_PE_absptr)
- return binary_search_unencoded_fdes (ob, pc);
- else
- return binary_search_single_encoding_fdes (ob, pc);
- }
- else
- {
- /* Long slow labourious linear search, cos we've no memory. */
- if (ob->s.b.from_array)
- {
- fde **p;
- for (p = ob->u.array; *p ; p++)
- {
- fde *f = linear_search_fdes (ob, *p, pc);
- if (f)
- return f;
- }
- return NULL;
- }
- else
- return linear_search_fdes (ob, ob->u.single, pc);
- }
-}
-
-fde *
-_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
-{
- struct object *ob;
- fde *f = NULL;
-
- init_object_mutex_once ();
- __gthread_mutex_lock (&object_mutex);
-
- /* Linear search through the classified objects, to find the one
- containing the pc. Note that pc_begin is sorted descending, and
- we expect objects to be non-overlapping. */
- for (ob = seen_objects; ob; ob = ob->next)
- if (pc >= ob->pc_begin)
- {
- f = search_object (ob, pc);
- if (f)
- goto fini;
- break;
- }
-
- /* Classify and search the objects we've not yet processed. */
- while ((ob = unseen_objects))
- {
- struct object **p;
-
- unseen_objects = ob->next;
- f = search_object (ob, pc);
-
- /* Insert the object into the classified list. */
- for (p = &seen_objects; *p ; p = &(*p)->next)
- if ((*p)->pc_begin < ob->pc_begin)
- break;
- ob->next = *p;
- *p = ob;
-
- if (f)
- goto fini;
- }
-
- fini:
- __gthread_mutex_unlock (&object_mutex);
-
- if (f)
- {
- int encoding;
- _Unwind_Ptr func;
-
- bases->tbase = ob->tbase;
- bases->dbase = ob->dbase;
-
- encoding = ob->s.b.encoding;
- if (ob->s.b.mixed_encoding)
- encoding = get_fde_encoding (f);
- read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
- f->pc_begin, &func);
- bases->func = (void *) func;
- }
-
- return f;
-}
-
-#endif