diff options
Diffstat (limited to 'math/k_casinhl.c')
-rw-r--r-- | math/k_casinhl.c | 92 |
1 files changed, 92 insertions, 0 deletions
diff --git a/math/k_casinhl.c b/math/k_casinhl.c new file mode 100644 index 0000000000..6412979755 --- /dev/null +++ b/math/k_casinhl.c @@ -0,0 +1,92 @@ +/* Return arc hyperbole sine for long double value, with the imaginary + part of the result possibly adjusted for use in computing other + functions. + Copyright (C) 1997-2013 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +#include <complex.h> +#include <math.h> +#include <math_private.h> +#include <float.h> + +/* To avoid spurious overflows, use this definition to treat IBM long + double as approximating an IEEE-style format. */ +#if LDBL_MANT_DIG == 106 +# undef LDBL_EPSILON +# define LDBL_EPSILON 0x1p-106L +#endif + +/* Return the complex inverse hyperbolic sine of finite nonzero Z, + with the imaginary part of the result subtracted from pi/2 if ADJ + is nonzero. */ + +__complex__ long double +__kernel_casinhl (__complex__ long double x, int adj) +{ + __complex__ long double res; + long double rx, ix; + __complex__ long double y; + + /* Avoid cancellation by reducing to the first quadrant. */ + rx = fabsl (__real__ x); + ix = fabsl (__imag__ x); + + if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON) + { + /* For large x in the first quadrant, x + csqrt (1 + x * x) + is sufficiently close to 2 * x to make no significant + difference to the result; avoid possible overflow from + the squaring and addition. */ + __real__ y = rx; + __imag__ y = ix; + + if (adj) + { + long double t = __real__ y; + __real__ y = __copysignl (__imag__ y, __imag__ x); + __imag__ y = t; + } + + res = __clogl (y); + __real__ res += M_LN2l; + } + else + { + __real__ y = (rx - ix) * (rx + ix) + 1.0; + __imag__ y = 2.0 * rx * ix; + + y = __csqrtl (y); + + __real__ y += rx; + __imag__ y += ix; + + if (adj) + { + long double t = __real__ y; + __real__ y = __copysignl (__imag__ y, __imag__ x); + __imag__ y = t; + } + + res = __clogl (y); + } + + /* Give results the correct sign for the original argument. */ + __real__ res = __copysignl (__real__ res, __real__ x); + __imag__ res = __copysignl (__imag__ res, (adj ? 1.0L : __imag__ x)); + + return res; +} |