aboutsummaryrefslogtreecommitdiff
path: root/math/k_casinh_template.c
diff options
context:
space:
mode:
Diffstat (limited to 'math/k_casinh_template.c')
-rw-r--r--math/k_casinh_template.c205
1 files changed, 0 insertions, 205 deletions
diff --git a/math/k_casinh_template.c b/math/k_casinh_template.c
deleted file mode 100644
index 4ab7d4b836..0000000000
--- a/math/k_casinh_template.c
+++ /dev/null
@@ -1,205 +0,0 @@
-/* Return arc hyperbolic sine for a complex float type, with the
- imaginary part of the result possibly adjusted for use in
- computing other functions.
- Copyright (C) 1997-2017 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* Return the complex inverse hyperbolic sine of finite nonzero Z,
- with the imaginary part of the result subtracted from pi/2 if ADJ
- is nonzero. */
-
-CFLOAT
-M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
-{
- CFLOAT res;
- FLOAT rx, ix;
- CFLOAT y;
-
- /* Avoid cancellation by reducing to the first quadrant. */
- rx = M_FABS (__real__ x);
- ix = M_FABS (__imag__ x);
-
- if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
- {
- /* For large x in the first quadrant, x + csqrt (1 + x * x)
- is sufficiently close to 2 * x to make no significant
- difference to the result; avoid possible overflow from
- the squaring and addition. */
- __real__ y = rx;
- __imag__ y = ix;
-
- if (adj)
- {
- FLOAT t = __real__ y;
- __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
- __imag__ y = t;
- }
-
- res = M_SUF (__clog) (y);
- __real__ res += (FLOAT) M_MLIT (M_LN2);
- }
- else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
- {
- FLOAT s = M_HYPOT (1, rx);
-
- __real__ res = M_LOG (rx + s);
- if (adj)
- __imag__ res = M_ATAN2 (s, __imag__ x);
- else
- __imag__ res = M_ATAN2 (ix, s);
- }
- else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
- {
- FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
-
- __real__ res = M_LOG (ix + s);
- if (adj)
- __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
- else
- __imag__ res = M_ATAN2 (s, rx);
- }
- else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
- {
- if (rx < M_EPSILON * M_EPSILON)
- {
- FLOAT ix2m1 = (ix + 1) * (ix - 1);
- FLOAT s = M_SQRT (ix2m1);
-
- __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
- else
- __imag__ res = M_ATAN2 (s, rx);
- }
- else
- {
- FLOAT ix2m1 = (ix + 1) * (ix - 1);
- FLOAT rx2 = rx * rx;
- FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
- FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
- FLOAT dp = d + ix2m1;
- FLOAT dm = f / dp;
- FLOAT r1 = M_SQRT ((dm + rx2) / 2);
- FLOAT r2 = rx * ix / r1;
-
- __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
- else
- __imag__ res = M_ATAN2 (ix + r2, rx + r1);
- }
- }
- else if (ix == 1 && rx < M_LIT (0.5))
- {
- if (rx < M_EPSILON / 8)
- {
- __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
- else
- __imag__ res = M_ATAN2 (1, M_SQRT (rx));
- }
- else
- {
- FLOAT d = rx * M_SQRT (4 + rx * rx);
- FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
- FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
-
- __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
- else
- __imag__ res = M_ATAN2 (1 + s2, rx + s1);
- }
- }
- else if (ix < 1 && rx < M_LIT (0.5))
- {
- if (ix >= M_EPSILON)
- {
- if (rx < M_EPSILON * M_EPSILON)
- {
- FLOAT onemix2 = (1 + ix) * (1 - ix);
- FLOAT s = M_SQRT (onemix2);
-
- __real__ res = M_LOG1P (2 * rx / s) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (s, __imag__ x);
- else
- __imag__ res = M_ATAN2 (ix, s);
- }
- else
- {
- FLOAT onemix2 = (1 + ix) * (1 - ix);
- FLOAT rx2 = rx * rx;
- FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
- FLOAT d = M_SQRT (onemix2 * onemix2 + f);
- FLOAT dp = d + onemix2;
- FLOAT dm = f / dp;
- FLOAT r1 = M_SQRT ((dp + rx2) / 2);
- FLOAT r2 = rx * ix / r1;
-
- __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
- __imag__ x));
- else
- __imag__ res = M_ATAN2 (ix + r2, rx + r1);
- }
- }
- else
- {
- FLOAT s = M_HYPOT (1, rx);
-
- __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
- if (adj)
- __imag__ res = M_ATAN2 (s, __imag__ x);
- else
- __imag__ res = M_ATAN2 (ix, s);
- }
- math_check_force_underflow_nonneg (__real__ res);
- }
- else
- {
- __real__ y = (rx - ix) * (rx + ix) + 1;
- __imag__ y = 2 * rx * ix;
-
- y = M_SUF (__csqrt) (y);
-
- __real__ y += rx;
- __imag__ y += ix;
-
- if (adj)
- {
- FLOAT t = __real__ y;
- __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
- __imag__ y = t;
- }
-
- res = M_SUF (__clog) (y);
- }
-
- /* Give results the correct sign for the original argument. */
- __real__ res = M_COPYSIGN (__real__ res, __real__ x);
- __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
-
- return res;
-}