diff options
Diffstat (limited to 'math/k_casinh_template.c')
-rw-r--r-- | math/k_casinh_template.c | 205 |
1 files changed, 0 insertions, 205 deletions
diff --git a/math/k_casinh_template.c b/math/k_casinh_template.c deleted file mode 100644 index 4ab7d4b836..0000000000 --- a/math/k_casinh_template.c +++ /dev/null @@ -1,205 +0,0 @@ -/* Return arc hyperbolic sine for a complex float type, with the - imaginary part of the result possibly adjusted for use in - computing other functions. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <complex.h> -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* Return the complex inverse hyperbolic sine of finite nonzero Z, - with the imaginary part of the result subtracted from pi/2 if ADJ - is nonzero. */ - -CFLOAT -M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj) -{ - CFLOAT res; - FLOAT rx, ix; - CFLOAT y; - - /* Avoid cancellation by reducing to the first quadrant. */ - rx = M_FABS (__real__ x); - ix = M_FABS (__imag__ x); - - if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON) - { - /* For large x in the first quadrant, x + csqrt (1 + x * x) - is sufficiently close to 2 * x to make no significant - difference to the result; avoid possible overflow from - the squaring and addition. */ - __real__ y = rx; - __imag__ y = ix; - - if (adj) - { - FLOAT t = __real__ y; - __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = M_SUF (__clog) (y); - __real__ res += (FLOAT) M_MLIT (M_LN2); - } - else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8) - { - FLOAT s = M_HYPOT (1, rx); - - __real__ res = M_LOG (rx + s); - if (adj) - __imag__ res = M_ATAN2 (s, __imag__ x); - else - __imag__ res = M_ATAN2 (ix, s); - } - else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5)) - { - FLOAT s = M_SQRT ((ix + 1) * (ix - 1)); - - __real__ res = M_LOG (ix + s); - if (adj) - __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); - else - __imag__ res = M_ATAN2 (s, rx); - } - else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5)) - { - if (rx < M_EPSILON * M_EPSILON) - { - FLOAT ix2m1 = (ix + 1) * (ix - 1); - FLOAT s = M_SQRT (ix2m1); - - __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2; - if (adj) - __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); - else - __imag__ res = M_ATAN2 (s, rx); - } - else - { - FLOAT ix2m1 = (ix + 1) * (ix - 1); - FLOAT rx2 = rx * rx; - FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); - FLOAT d = M_SQRT (ix2m1 * ix2m1 + f); - FLOAT dp = d + ix2m1; - FLOAT dm = f / dp; - FLOAT r1 = M_SQRT ((dm + rx2) / 2); - FLOAT r2 = rx * ix / r1; - - __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2; - if (adj) - __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x)); - else - __imag__ res = M_ATAN2 (ix + r2, rx + r1); - } - } - else if (ix == 1 && rx < M_LIT (0.5)) - { - if (rx < M_EPSILON / 8) - { - __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2; - if (adj) - __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x)); - else - __imag__ res = M_ATAN2 (1, M_SQRT (rx)); - } - else - { - FLOAT d = rx * M_SQRT (4 + rx * rx); - FLOAT s1 = M_SQRT ((d + rx * rx) / 2); - FLOAT s2 = M_SQRT ((d - rx * rx) / 2); - - __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2; - if (adj) - __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x)); - else - __imag__ res = M_ATAN2 (1 + s2, rx + s1); - } - } - else if (ix < 1 && rx < M_LIT (0.5)) - { - if (ix >= M_EPSILON) - { - if (rx < M_EPSILON * M_EPSILON) - { - FLOAT onemix2 = (1 + ix) * (1 - ix); - FLOAT s = M_SQRT (onemix2); - - __real__ res = M_LOG1P (2 * rx / s) / 2; - if (adj) - __imag__ res = M_ATAN2 (s, __imag__ x); - else - __imag__ res = M_ATAN2 (ix, s); - } - else - { - FLOAT onemix2 = (1 + ix) * (1 - ix); - FLOAT rx2 = rx * rx; - FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); - FLOAT d = M_SQRT (onemix2 * onemix2 + f); - FLOAT dp = d + onemix2; - FLOAT dm = f / dp; - FLOAT r1 = M_SQRT ((dp + rx2) / 2); - FLOAT r2 = rx * ix / r1; - - __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2; - if (adj) - __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, - __imag__ x)); - else - __imag__ res = M_ATAN2 (ix + r2, rx + r1); - } - } - else - { - FLOAT s = M_HYPOT (1, rx); - - __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2; - if (adj) - __imag__ res = M_ATAN2 (s, __imag__ x); - else - __imag__ res = M_ATAN2 (ix, s); - } - math_check_force_underflow_nonneg (__real__ res); - } - else - { - __real__ y = (rx - ix) * (rx + ix) + 1; - __imag__ y = 2 * rx * ix; - - y = M_SUF (__csqrt) (y); - - __real__ y += rx; - __imag__ y += ix; - - if (adj) - { - FLOAT t = __real__ y; - __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = M_SUF (__clog) (y); - } - - /* Give results the correct sign for the original argument. */ - __real__ res = M_COPYSIGN (__real__ res, __real__ x); - __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x)); - - return res; -} |