aboutsummaryrefslogtreecommitdiff
path: root/manual/math.texi
diff options
context:
space:
mode:
Diffstat (limited to 'manual/math.texi')
-rw-r--r--manual/math.texi524
1 files changed, 100 insertions, 424 deletions
diff --git a/manual/math.texi b/manual/math.texi
index 53c2bc1a1f..912e74009f 100644
--- a/manual/math.texi
+++ b/manual/math.texi
@@ -159,43 +159,28 @@ yourself:
You can also compute the value of pi with the expression @code{acos
(-1.0)}.
-@comment math.h
-@comment ISO
@deftypefun double sin (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float sinf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} sinl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the sine of @var{x}, where @var{x} is given in
radians. The return value is in the range @code{-1} to @code{1}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double cos (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float cosf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} cosl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the cosine of @var{x}, where @var{x} is given in
radians. The return value is in the range @code{-1} to @code{1}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double tan (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float tanf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} tanl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the tangent of @var{x}, where @var{x} is given in
radians.
@@ -210,15 +195,10 @@ and cosine of the same angle are needed at the same time. It is more
efficient to compute them simultaneously, so the library provides a
function to do that.
-@comment math.h
-@comment GNU
@deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
-@comment math.h
-@comment GNU
@deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
-@comment math.h
-@comment GNU
@deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
+@standards{GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the sine of @var{x} in @code{*@var{sinx}} and the
cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
@@ -239,15 +219,10 @@ by the standard.
(As of this writing GCC supports complex numbers, but there are bugs in
the implementation.)
-@comment complex.h
-@comment ISO
@deftypefun {complex double} csin (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} csinf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} csinl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@c There are calls to nan* that could trigger @mtslocale if they didn't get
@c empty strings.
@@ -262,15 +237,10 @@ $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
@end tex
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} ccos (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} ccosf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} ccosl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex cosine of @var{z}.
The mathematical definition of the complex cosine is
@@ -283,15 +253,10 @@ $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
@end tex
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} ctan (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} ctanf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} ctanl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex tangent of @var{z}.
The mathematical definition of the complex tangent is
@@ -318,15 +283,10 @@ These are the usual arcsine, arccosine and arctangent functions,
which are the inverses of the sine, cosine and tangent functions
respectively.
-@comment math.h
-@comment ISO
@deftypefun double asin (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float asinf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} asinl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the arcsine of @var{x}---that is, the value whose
sine is @var{x}. The value is in units of radians. Mathematically,
@@ -338,15 +298,10 @@ over the domain @code{-1} to @code{1}. If @var{x} is outside the
domain, @code{asin} signals a domain error.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double acos (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float acosf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} acosl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the arccosine of @var{x}---that is, the value
whose cosine is @var{x}. The value is in units of radians.
@@ -358,15 +313,10 @@ over the domain @code{-1} to @code{1}. If @var{x} is outside the
domain, @code{acos} signals a domain error.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double atan (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float atanf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} atanl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the arctangent of @var{x}---that is, the value
whose tangent is @var{x}. The value is in units of radians.
@@ -374,15 +324,10 @@ Mathematically, there are infinitely many such values; the one actually
returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double atan2 (double @var{y}, double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float atan2f (float @var{y}, float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
This function computes the arctangent of @var{y}/@var{x}, but the signs
of both arguments are used to determine the quadrant of the result, and
@@ -403,15 +348,10 @@ If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
@cindex inverse complex trigonometric functions
@w{ISO C99} defines complex versions of the inverse trig functions.
-@comment complex.h
-@comment ISO
@deftypefun {complex double} casin (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} casinf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} casinl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the complex arcsine of @var{z}---that is, the
value whose sine is @var{z}. The value returned is in radians.
@@ -420,15 +360,10 @@ Unlike the real-valued functions, @code{casin} is defined for all
values of @var{z}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} cacos (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} cacosf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} cacosl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the complex arccosine of @var{z}---that is, the
value whose cosine is @var{z}. The value returned is in radians.
@@ -438,15 +373,10 @@ values of @var{z}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} catan (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} catanf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} catanl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the complex arctangent of @var{z}---that is,
the value whose tangent is @var{z}. The value is in units of radians.
@@ -459,15 +389,10 @@ the value whose tangent is @var{z}. The value is in units of radians.
@cindex power functions
@cindex logarithm functions
-@comment math.h
-@comment ISO
@deftypefun double exp (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float expf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} expl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute @code{e} (the base of natural logarithms) raised
to the power @var{x}.
@@ -476,38 +401,25 @@ If the magnitude of the result is too large to be representable,
@code{exp} signals overflow.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double exp2 (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float exp2f (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} exp2l (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute @code{2} raised to the power @var{x}.
Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double exp10 (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float exp10f (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} exp10l (long double @var{x})
-@comment math.h
-@comment GNU
@deftypefunx double pow10 (double @var{x})
-@comment math.h
-@comment GNU
@deftypefunx float pow10f (float @var{x})
-@comment math.h
-@comment GNU
@deftypefunx {long double} pow10l (long double @var{x})
+@standards{ISO, math.h}
+@standardsx{pow10, GNU, math.h}
+@standardsx{pow10f, GNU, math.h}
+@standardsx{pow10l, GNU, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute @code{10} raised to the power @var{x}.
Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
@@ -518,15 +430,10 @@ preferred, since it is analogous to @code{exp} and @code{exp2}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double log (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float logf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} logl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the natural logarithm of @var{x}. @code{exp (log
(@var{x}))} equals @var{x}, exactly in mathematics and approximately in
@@ -537,44 +444,29 @@ is zero, it returns negative infinity; if @var{x} is too close to zero,
it may signal overflow.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double log10 (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float log10f (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} log10l (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the base-10 logarithm of @var{x}.
@code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double log2 (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float log2f (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} log2l (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the base-2 logarithm of @var{x}.
@code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double logb (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float logbf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} logbl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions extract the exponent of @var{x} and return it as a
floating-point value. If @code{FLT_RADIX} is two, @code{logb} is equal
@@ -586,24 +478,13 @@ negative), @code{logb} returns @math{@infinity{}}. If @var{x} is zero,
@code{logb} returns @math{@infinity{}}. It does not signal.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun int ilogb (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx int ilogbf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx int ilogbl (long double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long int} llogb (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long int} llogbf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long int} llogbl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are equivalent to the corresponding @code{logb}
functions except that they return signed integer values. The
@@ -616,36 +497,32 @@ Since integers cannot represent infinity and NaN, @code{ilogb} instead
returns an integer that can't be the exponent of a normal floating-point
number. @file{math.h} defines constants so you can check for this.
-@comment math.h
-@comment ISO
@deftypevr Macro int FP_ILOGB0
+@standards{ISO, math.h}
@code{ilogb} returns this value if its argument is @code{0}. The
numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
This macro is defined in @w{ISO C99}.
@end deftypevr
-@comment math.h
-@comment ISO
@deftypevr Macro {long int} FP_LLOGB0
+@standards{ISO, math.h}
@code{llogb} returns this value if its argument is @code{0}. The
numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.
This macro is defined in TS 18661-1:2014.
@end deftypevr
-@comment math.h
-@comment ISO
@deftypevr Macro int FP_ILOGBNAN
+@standards{ISO, math.h}
@code{ilogb} returns this value if its argument is @code{NaN}. The
numeric value is either @code{INT_MIN} or @code{INT_MAX}.
This macro is defined in @w{ISO C99}.
@end deftypevr
-@comment math.h
-@comment ISO
@deftypevr Macro {long int} FP_LLOGBNAN
+@standards{ISO, math.h}
@code{llogb} returns this value if its argument is @code{NaN}. The
numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.
@@ -675,15 +552,10 @@ if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
@}
@end smallexample
-@comment math.h
-@comment ISO
@deftypefun double pow (double @var{base}, double @var{power})
-@comment math.h
-@comment ISO
@deftypefunx float powf (float @var{base}, float @var{power})
-@comment math.h
-@comment ISO
@deftypefunx {long double} powl (long double @var{base}, long double @var{power})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These are general exponentiation functions, returning @var{base} raised
to @var{power}.
@@ -695,15 +567,10 @@ underflow or overflow the destination type.
@end deftypefun
@cindex square root function
-@comment math.h
-@comment ISO
@deftypefun double sqrt (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float sqrtf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} sqrtl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the nonnegative square root of @var{x}.
@@ -712,29 +579,19 @@ Mathematically, it should return a complex number.
@end deftypefun
@cindex cube root function
-@comment math.h
-@comment BSD
@deftypefun double cbrt (double @var{x})
-@comment math.h
-@comment BSD
@deftypefunx float cbrtf (float @var{x})
-@comment math.h
-@comment BSD
@deftypefunx {long double} cbrtl (long double @var{x})
+@standards{BSD, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the cube root of @var{x}. They cannot
fail; every representable real value has a representable real cube root.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double hypot (double @var{x}, double @var{y})
-@comment math.h
-@comment ISO
@deftypefunx float hypotf (float @var{x}, float @var{y})
-@comment math.h
-@comment ISO
@deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @code{sqrt (@var{x}*@var{x} +
@var{y}*@var{y})}. This is the length of the hypotenuse of a right
@@ -744,15 +601,10 @@ instead of the direct formula is wise, since the error is
much smaller. See also the function @code{cabs} in @ref{Absolute Value}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double expm1 (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float expm1f (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} expm1l (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return a value equivalent to @code{exp (@var{x}) - 1}.
They are computed in a way that is accurate even if @var{x} is
@@ -760,15 +612,10 @@ near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
to subtraction of two numbers that are nearly equal.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double log1p (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float log1pf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} log1pl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
They are computed in a way that is accurate even if @var{x} is
@@ -781,15 +628,10 @@ near zero.
@w{ISO C99} defines complex variants of some of the exponentiation and
logarithm functions.
-@comment complex.h
-@comment ISO
@deftypefun {complex double} cexp (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} cexpf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} cexpl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @code{e} (the base of natural
logarithms) raised to the power of @var{z}.
@@ -803,15 +645,10 @@ $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
@end tex
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} clog (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} clogf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} clogl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the natural logarithm of @var{z}.
Mathematically, this corresponds to the value
@@ -830,15 +667,10 @@ or is very close to 0. It is well-defined for all other values of
@end deftypefun
-@comment complex.h
-@comment GNU
@deftypefun {complex double} clog10 (complex double @var{z})
-@comment complex.h
-@comment GNU
@deftypefunx {complex float} clog10f (complex float @var{z})
-@comment complex.h
-@comment GNU
@deftypefunx {complex long double} clog10l (complex long double @var{z})
+@standards{GNU, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the base 10 logarithm of the complex value
@var{z}. Mathematically, this corresponds to the value
@@ -853,29 +685,19 @@ $$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
These functions are GNU extensions.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} csqrt (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} csqrtf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} csqrtl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex square root of the argument @var{z}. Unlike
the real-valued functions, they are defined for all values of @var{z}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @var{base} raised to the power of
@var{power}. This is equivalent to @w{@code{cexp (y * clog (x))}}
@@ -888,45 +710,30 @@ These functions return @var{base} raised to the power of
The functions in this section are related to the exponential functions;
see @ref{Exponents and Logarithms}.
-@comment math.h
-@comment ISO
@deftypefun double sinh (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float sinhf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} sinhl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the hyperbolic sine of @var{x}, defined
mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}. They
may signal overflow if @var{x} is too large.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double cosh (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float coshf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} coshl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the hyperbolic cosine of @var{x},
defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
They may signal overflow if @var{x} is too large.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double tanh (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float tanhf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} tanhl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the hyperbolic tangent of @var{x},
defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
@@ -938,43 +745,28 @@ They may signal overflow if @var{x} is too large.
There are counterparts for the hyperbolic functions which take
complex arguments.
-@comment complex.h
-@comment ISO
@deftypefun {complex double} csinh (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} csinhf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} csinhl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex hyperbolic sine of @var{z}, defined
mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} ccosh (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} ccoshf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} ccoshl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex hyperbolic cosine of @var{z}, defined
mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} ctanh (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} ctanhf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} ctanhl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the complex hyperbolic tangent of @var{z},
defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
@@ -983,44 +775,29 @@ defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
@cindex inverse hyperbolic functions
-@comment math.h
-@comment ISO
@deftypefun double asinh (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float asinhf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} asinhl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse hyperbolic sine of @var{x}---the
value whose hyperbolic sine is @var{x}.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double acosh (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float acoshf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} acoshl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse hyperbolic cosine of @var{x}---the
value whose hyperbolic cosine is @var{x}. If @var{x} is less than
@code{1}, @code{acosh} signals a domain error.
@end deftypefun
-@comment math.h
-@comment ISO
@deftypefun double atanh (double @var{x})
-@comment math.h
-@comment ISO
@deftypefunx float atanhf (float @var{x})
-@comment math.h
-@comment ISO
@deftypefunx {long double} atanhl (long double @var{x})
+@standards{ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse hyperbolic tangent of @var{x}---the
value whose hyperbolic tangent is @var{x}. If the absolute value of
@@ -1030,44 +807,29 @@ if it is equal to 1, @code{atanh} returns infinity.
@cindex inverse complex hyperbolic functions
-@comment complex.h
-@comment ISO
@deftypefun {complex double} casinh (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} casinhf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} casinhl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse complex hyperbolic sine of
@var{z}---the value whose complex hyperbolic sine is @var{z}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} cacosh (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} cacoshf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} cacoshl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse complex hyperbolic cosine of
@var{z}---the value whose complex hyperbolic cosine is @var{z}. Unlike
the real-valued functions, there are no restrictions on the value of @var{z}.
@end deftypefun
-@comment complex.h
-@comment ISO
@deftypefun {complex double} catanh (complex double @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex float} catanhf (complex float @var{z})
-@comment complex.h
-@comment ISO
@deftypefunx {complex long double} catanhl (complex long double @var{z})
+@standards{ISO, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the inverse complex hyperbolic tangent of
@var{z}---the value whose complex hyperbolic tangent is @var{z}. Unlike
@@ -1084,15 +846,10 @@ the real-valued functions, there are no restrictions on the value of
These are some more exotic mathematical functions which are sometimes
useful. Currently they only have real-valued versions.
-@comment math.h
-@comment SVID
@deftypefun double erf (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float erff (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} erfl (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{erf} returns the error function of @var{x}. The error
function is defined as
@@ -1106,29 +863,19 @@ erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
@end ifnottex
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double erfc (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float erfcf (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} erfcl (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
fashion that avoids round-off error when @var{x} is large.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double lgamma (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float lgammaf (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} lgammal (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
@code{lgamma} returns the natural logarithm of the absolute value of
the gamma function of @var{x}. The gamma function is defined as
@@ -1159,30 +906,20 @@ The gamma function has singularities at the non-positive integers.
singularity.
@end deftypefun
-@comment math.h
-@comment XPG
@deftypefun double lgamma_r (double @var{x}, int *@var{signp})
-@comment math.h
-@comment XPG
@deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
-@comment math.h
-@comment XPG
@deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
+@standards{XPG, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
the intermediate result in the variable pointed to by @var{signp}
instead of in the @var{signgam} global. This means it is reentrant.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double gamma (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float gammaf (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} gammal (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
These functions exist for compatibility reasons. They are equivalent to
@code{lgamma} etc. It is better to use @code{lgamma} since for one the
@@ -1190,15 +927,15 @@ name reflects better the actual computation, and moreover @code{lgamma} is
standardized in @w{ISO C99} while @code{gamma} is not.
@end deftypefun
-@comment math.h
-@comment XPG, ISO
@deftypefun double tgamma (double @var{x})
-@comment math.h
-@comment XPG, ISO
@deftypefunx float tgammaf (float @var{x})
-@comment math.h
-@comment XPG, ISO
@deftypefunx {long double} tgammal (long double @var{x})
+@standardsx{tgamma, XPG, math.h}
+@standardsx{tgamma, ISO, math.h}
+@standardsx{tgammaf, XPG, math.h}
+@standardsx{tgammaf, ISO, math.h}
+@standardsx{tgammal, XPG, math.h}
+@standardsx{tgammal, ISO, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{tgamma} applies the gamma function to @var{x}. The gamma
function is defined as
@@ -1214,57 +951,37 @@ gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
This function was introduced in @w{ISO C99}.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double j0 (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float j0f (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} j0l (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{j0} returns the Bessel function of the first kind of order 0 of
@var{x}. It may signal underflow if @var{x} is too large.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double j1 (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float j1f (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} j1l (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{j1} returns the Bessel function of the first kind of order 1 of
@var{x}. It may signal underflow if @var{x} is too large.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double jn (int @var{n}, double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float jnf (int @var{n}, float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} jnl (int @var{n}, long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{jn} returns the Bessel function of the first kind of order
@var{n} of @var{x}. It may signal underflow if @var{x} is too large.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double y0 (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float y0f (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} y0l (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{y0} returns the Bessel function of the second kind of order 0 of
@var{x}. It may signal underflow if @var{x} is too large. If @var{x}
@@ -1272,15 +989,10 @@ is negative, @code{y0} signals a domain error; if it is zero,
@code{y0} signals overflow and returns @math{-@infinity}.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double y1 (double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float y1f (float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} y1l (long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{y1} returns the Bessel function of the second kind of order 1 of
@var{x}. It may signal underflow if @var{x} is too large. If @var{x}
@@ -1288,15 +1000,10 @@ is negative, @code{y1} signals a domain error; if it is zero,
@code{y1} signals overflow and returns @math{-@infinity}.
@end deftypefun
-@comment math.h
-@comment SVID
@deftypefun double yn (int @var{n}, double @var{x})
-@comment math.h
-@comment SVID
@deftypefunx float ynf (int @var{n}, float @var{x})
-@comment math.h
-@comment SVID
@deftypefunx {long double} ynl (int @var{n}, long double @var{x})
+@standards{SVID, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{yn} returns the Bessel function of the second kind of order @var{n} of
@var{x}. It may signal underflow if @var{x} is too large. If @var{x}
@@ -1492,27 +1199,24 @@ To use these facilities, you should include the header file
@file{stdlib.h} in your program.
@pindex stdlib.h
-@comment stdlib.h
-@comment ISO
@deftypevr Macro int RAND_MAX
+@standards{ISO, stdlib.h}
The value of this macro is an integer constant representing the largest
value the @code{rand} function can return. In @theglibc{}, it is
@code{2147483647}, which is the largest signed integer representable in
32 bits. In other libraries, it may be as low as @code{32767}.
@end deftypevr
-@comment stdlib.h
-@comment ISO
@deftypefun int rand (void)
+@standards{ISO, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Just calls random.
The @code{rand} function returns the next pseudo-random number in the
series. The value ranges from @code{0} to @code{RAND_MAX}.
@end deftypefun
-@comment stdlib.h
-@comment ISO
@deftypefun void srand (unsigned int @var{seed})
+@standards{ISO, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Alias to srandom.
This function establishes @var{seed} as the seed for a new series of
@@ -1528,9 +1232,8 @@ POSIX.1 extended the C standard functions to support reproducible random
numbers in multi-threaded programs. However, the extension is badly
designed and unsuitable for serious work.
-@comment stdlib.h
-@comment POSIX.1
@deftypefun int rand_r (unsigned int *@var{seed})
+@standards{POSIX.1, stdlib.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
This function returns a random number in the range 0 to @code{RAND_MAX}
just as @code{rand} does. However, all its state is stored in the
@@ -1555,9 +1258,8 @@ with @theglibc{}; we support them for BSD compatibility only.
The prototypes for these functions are in @file{stdlib.h}.
@pindex stdlib.h
-@comment stdlib.h
-@comment BSD
@deftypefun {long int} random (void)
+@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Takes a lock and calls random_r with an automatic variable and the
@c global state, while holding a lock.
@@ -1571,9 +1273,8 @@ differently. Users must always be aware of the 32-bit limitation,
though.
@end deftypefun
-@comment stdlib.h
-@comment BSD
@deftypefun void srandom (unsigned int @var{seed})
+@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
@c Takes a lock and calls srandom_r with an automatic variable and a
@c static buffer. There's no MT-safety issue because the static buffer
@@ -1588,9 +1289,8 @@ To produce a different set of pseudo-random numbers each time your
program runs, do @code{srandom (time (0))}.
@end deftypefun
-@comment stdlib.h
-@comment BSD
@deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
+@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
The @code{initstate} function is used to initialize the random number
generator state. The argument @var{state} is an array of @var{size}
@@ -1603,9 +1303,8 @@ You can use this value later as an argument to @code{setstate} to
restore that state.
@end deftypefun
-@comment stdlib.h
-@comment BSD
@deftypefun {char *} setstate (char *@var{state})
+@standards{BSD, stdlib.h}
@safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
The @code{setstate} function restores the random number state
information @var{state}. The argument must have been the result of
@@ -1632,9 +1331,8 @@ following interfaces.
The @file{stdlib.h} header contains a definition of the following type:
-@comment stdlib.h
-@comment GNU
@deftp {Data Type} {struct random_data}
+@standards{GNU, stdlib.h}
Objects of type @code{struct random_data} contain the information
necessary to represent the state of the PRNG. Although a complete
@@ -1644,36 +1342,32 @@ definition of the type is present the type should be treated as opaque.
The functions modifying the state follow exactly the already described
functions.
-@comment stdlib.h
-@comment GNU
@deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{random_r} function behaves exactly like the @code{random}
function except that it uses and modifies the state in the object
pointed to by the first parameter instead of the global state.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{srandom_r} function behaves exactly like the @code{srandom}
function except that it uses and modifies the state in the object
pointed to by the second parameter instead of the global state.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{initstate_r} function behaves exactly like the @code{initstate}
function except that it uses and modifies the state in the object
pointed to by the fourth parameter instead of the global state.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{setstate_r} function behaves exactly like the @code{setstate}
function except that it uses and modifies the state in the object
@@ -1718,9 +1412,8 @@ The prototypes for these functions are in @file{stdlib.h}.
@pindex stdlib.h
-@comment stdlib.h
-@comment SVID
@deftypefun double drand48 (void)
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
@c Uses of the static state buffer are not guarded by a lock (thus
@c @mtasurace:drand48), so they may be found or left at a
@@ -1737,9 +1430,8 @@ generator. These are (of course) chosen to be the least significant
bits and they are initialized to @code{0}.
@end deftypefun
-@comment stdlib.h
-@comment SVID
@deftypefun double erand48 (unsigned short int @var{xsubi}[3])
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
@c The static buffer is just initialized with default parameters, which
@c are later read to advance the state held in xsubi.
@@ -1752,9 +1444,8 @@ guarantee random numbers. The array should have been initialized before
initial use to obtain reproducible results.
@end deftypefun
-@comment stdlib.h
-@comment SVID
@deftypefun {long int} lrand48 (void)
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{lrand48} function returns an integer value in the range of
@code{0} to @code{2^31} (exclusive). Even if the size of the @code{long
@@ -1763,9 +1454,8 @@ The random bits are determined by the global state of the random number
generator in the C library.
@end deftypefun
-@comment stdlib.h
-@comment SVID
@deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
This function is similar to the @code{lrand48} function in that it
returns a number in the range of @code{0} to @code{2^31} (exclusive) but
@@ -1778,18 +1468,16 @@ number generator). The array should have been initialized before the
first call to obtain reproducible results.
@end deftypefun
-@comment stdlib.h
-@comment SVID
@deftypefun {long int} mrand48 (void)
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{mrand48} function is similar to @code{lrand48}. The only
difference is that the numbers returned are in the range @code{-2^31} to
@code{2^31} (exclusive).
@end deftypefun
-@comment stdlib.h
-@comment SVID
@deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{jrand48} function is similar to @code{nrand48}. The only
difference is that the numbers returned are in the range @code{-2^31} to
@@ -1801,9 +1489,8 @@ The internal state of the random number generator can be initialized in
several ways. The methods differ in the completeness of the
information provided.
-@comment stdlib.h
-@comment SVID
@deftypefun void srand48 (long int @var{seedval})
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{srand48} function sets the most significant 32 bits of the
internal state of the random number generator to the least
@@ -1821,9 +1508,8 @@ are reset to the default values given above. This is of importance once
the user has called the @code{lcong48} function (see below).
@end deftypefun
-@comment stdlib.h
-@comment SVID
@deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{seed48} function initializes all 48 bits of the state of the
internal random number generator from the contents of the parameter
@@ -1849,9 +1535,8 @@ There is one more function to initialize the random number generator
which enables you to specify even more information by allowing you to
change the parameters in the congruential formula.
-@comment stdlib.h
-@comment SVID
@deftypefun void lcong48 (unsigned short int @var{param}[7])
+@standards{SVID, stdlib.h}
@safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
The @code{lcong48} function allows the user to change the complete state
of the random number generator. Unlike @code{srand48} and
@@ -1882,9 +1567,8 @@ obtain an individual random number generator.
The user-supplied buffer must be of type @code{struct drand48_data}.
This type should be regarded as opaque and not manipulated directly.
-@comment stdlib.h
-@comment GNU
@deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is equivalent to the @code{drand48} function with the
difference that it does not modify the global random number generator
@@ -1900,9 +1584,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{erand48_r} function works like @code{erand48}, but in addition
it takes an argument @var{buffer} which describes the random number
@@ -1917,9 +1600,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is similar to @code{lrand48}, but in addition it takes a
pointer to a buffer describing the state of the random number generator
@@ -1932,9 +1614,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{nrand48_r} function works like @code{nrand48} in that it
produces a random number in the range @code{0} to @code{2^31}. But instead
@@ -1949,9 +1630,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is similar to @code{mrand48} but like the other reentrant
functions it uses the random number generator described by the value in
@@ -1964,9 +1644,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The @code{jrand48_r} function is similar to @code{jrand48}. Like the
other reentrant functions of this function family it uses the
@@ -1999,9 +1678,8 @@ buffer from looking at the parameter to the function, it is highly
recommended to use these functions since the result might not always be
what you expect.
-@comment stdlib.h
-@comment GNU
@deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
The description of the random number generator represented by the
information in @var{buffer} is initialized similarly to what the function
@@ -2015,9 +1693,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function is similar to @code{srand48_r} but like @code{seed48} it
initializes all 48 bits of the state from the parameter @var{seed16v}.
@@ -2032,9 +1709,8 @@ This function is a GNU extension and should not be used in portable
programs.
@end deftypefun
-@comment stdlib.h
-@comment GNU
@deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
+@standards{GNU, stdlib.h}
@safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
This function initializes all aspects of the random number generator
described in @var{buffer} with the data in @var{param}. Here it is