aboutsummaryrefslogtreecommitdiff
path: root/REORG.TODO/sysdeps/i386/i586/strchr.S
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/sysdeps/i386/i586/strchr.S')
-rw-r--r--REORG.TODO/sysdeps/i386/i586/strchr.S348
1 files changed, 348 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/i386/i586/strchr.S b/REORG.TODO/sysdeps/i386/i586/strchr.S
new file mode 100644
index 0000000000..02f66b8f72
--- /dev/null
+++ b/REORG.TODO/sysdeps/i386/i586/strchr.S
@@ -0,0 +1,348 @@
+/* Find character CH in a NUL terminated string.
+ Highly optimized version for ix85, x>=5.
+ Copyright (C) 1995-2017 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper, <drepper@gnu.ai.mit.edu>.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <sysdep.h>
+#include "asm-syntax.h"
+
+/* This version is especially optimized for the i586 (and following?)
+ processors. This is mainly done by using the two pipelines. The
+ version optimized for i486 is weak in this aspect because to get
+ as much parallelism we have to execute some *more* instructions.
+
+ The code below is structured to reflect the pairing of the instructions
+ as *I think* it is. I have no processor data book to verify this.
+ If you find something you think is incorrect let me know. */
+
+
+/* The magic value which is used throughout in the whole code. */
+#define magic 0xfefefeff
+
+#define PARMS 4+16 /* space for 4 saved regs */
+#define RTN PARMS
+#define STR RTN
+#define CHR STR+4
+
+ .text
+ENTRY (strchr)
+
+ pushl %edi /* Save callee-safe registers. */
+ cfi_adjust_cfa_offset (-4)
+ pushl %esi
+ cfi_adjust_cfa_offset (-4)
+
+ pushl %ebx
+ cfi_adjust_cfa_offset (-4)
+ pushl %ebp
+ cfi_adjust_cfa_offset (-4)
+
+ movl STR(%esp), %eax
+ movl CHR(%esp), %edx
+
+ movl %eax, %edi /* duplicate string pointer for later */
+ cfi_rel_offset (edi, 12)
+ xorl %ecx, %ecx /* clear %ecx */
+
+ /* At the moment %edx contains C. What we need for the
+ algorithm is C in all bytes of the dword. Avoid
+ operations on 16 bit words because these require an
+ prefix byte (and one more cycle). */
+ movb %dl, %dh /* now it is 0|0|c|c */
+ movb %dl, %cl /* we construct the lower half in %ecx */
+
+ shll $16, %edx /* now %edx is c|c|0|0 */
+ movb %cl, %ch /* now %ecx is 0|0|c|c */
+
+ orl %ecx, %edx /* and finally c|c|c|c */
+ andl $3, %edi /* mask alignment bits */
+
+ jz L(11) /* alignment is 0 => start loop */
+
+ movb %dl, %cl /* 0 is needed below */
+ jp L(0) /* exactly two bits set */
+
+ xorb (%eax), %cl /* is byte the one we are looking for? */
+ jz L(out) /* yes => return pointer */
+
+ xorb %dl, %cl /* load single byte and test for NUL */
+ je L(3) /* yes => return NULL */
+
+ movb 1(%eax), %cl /* load single byte */
+ incl %eax
+
+ cmpb %cl, %dl /* is byte == C? */
+ je L(out) /* aligned => return pointer */
+
+ cmpb $0, %cl /* is byte NUL? */
+ je L(3) /* yes => return NULL */
+
+ incl %eax
+ decl %edi
+
+ jne L(11)
+
+L(0): movb (%eax), %cl /* load single byte */
+
+ cmpb %cl, %dl /* is byte == C? */
+ je L(out) /* aligned => return pointer */
+
+ cmpb $0, %cl /* is byte NUL? */
+ je L(3) /* yes => return NULL */
+
+ incl %eax /* increment pointer */
+
+ cfi_rel_offset (esi, 8)
+ cfi_rel_offset (ebx, 4)
+ cfi_rel_offset (ebp, 0)
+
+ /* The following code is the preparation for the loop. The
+ four instruction up to `L1' will not be executed in the loop
+ because the same code is found at the end of the loop, but
+ there it is executed in parallel with other instructions. */
+L(11): movl (%eax), %ecx
+ movl $magic, %ebp
+
+ movl $magic, %edi
+ addl %ecx, %ebp
+
+ /* The main loop: it looks complex and indeed it is. I would
+ love to say `it was hard to write, so it should he hard to
+ read' but I will give some more hints. To fully understand
+ this code you should first take a look at the i486 version.
+ The basic algorithm is the same, but here the code organized
+ in a way which permits to use both pipelines all the time.
+
+ I tried to make it a bit more understandable by indenting
+ the code according to stage in the algorithm. It goes as
+ follows:
+ check for 0 in 1st word
+ check for C in 1st word
+ check for 0 in 2nd word
+ check for C in 2nd word
+ check for 0 in 3rd word
+ check for C in 3rd word
+ check for 0 in 4th word
+ check for C in 4th word
+
+ Please note that doing the test for NUL before the test for
+ C allows us to overlap the test for 0 in the next word with
+ the test for C. */
+
+L(1): xorl %ecx, %ebp /* (word^magic) */
+ addl %ecx, %edi /* add magic word */
+
+ leal 4(%eax), %eax /* increment pointer */
+ jnc L(4) /* previous addl caused overflow? */
+
+ movl %ecx, %ebx /* duplicate original word */
+ orl $magic, %ebp /* (word^magic)|magic */
+
+ addl $1, %ebp /* (word^magic)|magic == 0xffffffff? */
+ jne L(4) /* yes => we found word with NUL */
+
+ movl $magic, %esi /* load magic value */
+ xorl %edx, %ebx /* clear words which are C */
+
+ movl (%eax), %ecx
+ addl %ebx, %esi /* (word+magic) */
+
+ movl $magic, %edi
+ jnc L(5) /* previous addl caused overflow? */
+
+ movl %edi, %ebp
+ xorl %ebx, %esi /* (word+magic)^word */
+
+ addl %ecx, %ebp
+ orl $magic, %esi /* ((word+magic)^word)|magic */
+
+ addl $1, %esi /* ((word+magic)^word)|magic==0xf..f?*/
+ jne L(5) /* yes => we found word with C */
+
+ xorl %ecx, %ebp
+ addl %ecx, %edi
+
+ leal 4(%eax), %eax
+ jnc L(4)
+
+ movl %ecx, %ebx
+ orl $magic, %ebp
+
+ addl $1, %ebp
+ jne L(4)
+
+ movl $magic, %esi
+ xorl %edx, %ebx
+
+ movl (%eax), %ecx
+ addl %ebx, %esi
+
+ movl $magic, %edi
+ jnc L(5)
+
+ movl %edi, %ebp
+ xorl %ebx, %esi
+
+ addl %ecx, %ebp
+ orl $magic, %esi
+
+ addl $1, %esi
+ jne L(5)
+
+ xorl %ecx, %ebp
+ addl %ecx, %edi
+
+ leal 4(%eax), %eax
+ jnc L(4)
+
+ movl %ecx, %ebx
+ orl $magic, %ebp
+
+ addl $1, %ebp
+ jne L(4)
+
+ movl $magic, %esi
+ xorl %edx, %ebx
+
+ movl (%eax), %ecx
+ addl %ebx, %esi
+
+ movl $magic, %edi
+ jnc L(5)
+
+ movl %edi, %ebp
+ xorl %ebx, %esi
+
+ addl %ecx, %ebp
+ orl $magic, %esi
+
+ addl $1, %esi
+ jne L(5)
+
+ xorl %ecx, %ebp
+ addl %ecx, %edi
+
+ leal 4(%eax), %eax
+ jnc L(4)
+
+ movl %ecx, %ebx
+ orl $magic, %ebp
+
+ addl $1, %ebp
+ jne L(4)
+
+ movl $magic, %esi
+ xorl %edx, %ebx
+
+ movl (%eax), %ecx
+ addl %ebx, %esi
+
+ movl $magic, %edi
+ jnc L(5)
+
+ movl %edi, %ebp
+ xorl %ebx, %esi
+
+ addl %ecx, %ebp
+ orl $magic, %esi
+
+ addl $1, %esi
+
+ je L(1)
+
+ /* We know there is no NUL byte but a C byte in the word.
+ %ebx contains NUL in this particular byte. */
+L(5): subl $4, %eax /* adjust pointer */
+ testb %bl, %bl /* first byte == C? */
+
+ jz L(out) /* yes => return pointer */
+
+ incl %eax /* increment pointer */
+ testb %bh, %bh /* second byte == C? */
+
+ jz L(out) /* yes => return pointer */
+
+ shrl $16, %ebx /* make upper bytes accessible */
+ incl %eax /* increment pointer */
+
+ cmp $0, %bl /* third byte == C */
+ je L(out) /* yes => return pointer */
+
+ incl %eax /* increment pointer */
+
+L(out): popl %ebp /* restore saved registers */
+ cfi_adjust_cfa_offset (-4)
+ cfi_restore (ebp)
+ popl %ebx
+ cfi_adjust_cfa_offset (-4)
+ cfi_restore (ebx)
+
+ popl %esi
+ cfi_adjust_cfa_offset (-4)
+ cfi_restore (esi)
+ popl %edi
+ cfi_adjust_cfa_offset (-4)
+ cfi_restore (edi)
+
+ ret
+
+ cfi_adjust_cfa_offset (16)
+ cfi_rel_offset (edi, 12)
+ cfi_rel_offset (esi, 8)
+ cfi_rel_offset (ebx, 4)
+ cfi_rel_offset (ebp, 0)
+ /* We know there is a NUL byte in the word. But we have to test
+ whether there is an C byte before it in the word. */
+L(4): subl $4, %eax /* adjust pointer */
+ cmpb %dl, %cl /* first byte == C? */
+
+ je L(out) /* yes => return pointer */
+
+ cmpb $0, %cl /* first byte == NUL? */
+ je L(3) /* yes => return NULL */
+
+ incl %eax /* increment pointer */
+
+ cmpb %dl, %ch /* second byte == C? */
+ je L(out) /* yes => return pointer */
+
+ cmpb $0, %ch /* second byte == NUL? */
+ je L(3) /* yes => return NULL */
+
+ shrl $16, %ecx /* make upper bytes accessible */
+ incl %eax /* increment pointer */
+
+ cmpb %dl, %cl /* third byte == C? */
+ je L(out) /* yes => return pointer */
+
+ cmpb $0, %cl /* third byte == NUL? */
+ je L(3) /* yes => return NULL */
+
+ incl %eax /* increment pointer */
+
+ /* The test four the fourth byte is necessary! */
+ cmpb %dl, %ch /* fourth byte == C? */
+ je L(out) /* yes => return pointer */
+
+L(3): xorl %eax, %eax
+ jmp L(out)
+END (strchr)
+
+#undef index
+weak_alias (strchr, index)
+libc_hidden_builtin_def (strchr)