diff options
author | Ulrich Drepper <drepper@redhat.com> | 1997-08-29 01:19:12 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 1997-08-29 01:19:12 +0000 |
commit | 39e16978c3b4ac8eaf2201fac56316623910d9da (patch) | |
tree | 054fff18119b31464b3133ad91050694130c7d2a /sysdeps/powerpc | |
parent | 92f1da4da04a7a86ddee91be5eaf0b10c333ac64 (diff) | |
download | glibc-39e16978c3b4ac8eaf2201fac56316623910d9da.tar glibc-39e16978c3b4ac8eaf2201fac56316623910d9da.tar.gz glibc-39e16978c3b4ac8eaf2201fac56316623910d9da.tar.bz2 glibc-39e16978c3b4ac8eaf2201fac56316623910d9da.zip |
Update.cvs/libc-ud-970828
1997-08-29 02:36 Ulrich Drepper <drepper@cygnus.com>
* Makefile (version-info.h): Use ISO form for the date.
* catgets/catgetsinfo.h: Include <bits/libc-lock.h>.
(struct catalog_obj): Add lock field.
(__open_catalog): Remove second parameter from prototype.
* catgets/catgets.c (catopen): Initialize lock field.
(catgets): Don't pass second parameter to __open_catalog.
* catgets/gencat.c: Initialize lock field and don't pass second
parameter to __open_catalog.
* catgets/open_catalog.c (__open_catalog): Decide about use of
path by examining path in struct, not based on extra argument.
Acquire a the lock before trying to load the catalog and release
it before returning.
* csu/Makefile (abi-tag.h): Make sure target directory exists.
* io/Makefile (headers): Add bits/poll.h.
* io/sys/poll.h: Remove definitions of POLL* constants.
Include <bits/poll.h>.
* sysdeps/generic/bits/poll.h: New file.
* sysdeps/unix/sysv/linux/bits/poll.h: New file.
* sysdeps/unix/sysv/linux/m68k/bits/poll.h: New file.
* sysdeps/unix/sysv/linux/mips/bits/poll.h: New file.
* sysdeps/unix/sysv/linux/sparc/bits/poll.h: New file.
* libio/fileops.c (_IO_file_read, _IO_file_write): Remove dead code.
* malloc/obstack.c: Add casts to keep very verbose compilers on
64bit machine quiet.
* nss/Makefile (libnss_db.so): Find libdb.so in db2 directory.
1997-08-28 17:30 Ulrich Drepper <drepper@cygnus.com>
* catgets/catgets.c (catopen): Correctly determine length of string
in NLSPATH evironment variable. Patch by HJ Lu <hjl@gnu.ai.mit.edu>.
1997-08-27 23:19 Richard Henderson <rth@cygnus.com>
* sysdeps/generic/dl-sysdep.c (DL_FIND_ARG_COMPONENTS): Provide
default macro to track down arguments from stack start.
(_dl_sysdep_start): Use it.
* sysdeps/unix/sysv/linux/powerpc/dl-sysdep.c: Truncate to simply
providing a special DL_FIND_ARG_COMPONENTS and including the next
file up the line.
* sysdeps/powerpc/e_sqrt.c: Move contents to w_sqrt.c and provide stub.
* sysdeps/powerpc/e_sqrtf.c: Likewise.
* sysdeps/powerpc/s_copysignf.S: Provide empty file; symbol is with
the double precision version.
* sysdeps/powerpc/s_fabsf.S: Likewise.
* sysdeps/powerpc/s_isnanf.S: Likewise.
Diffstat (limited to 'sysdeps/powerpc')
-rw-r--r-- | sysdeps/powerpc/e_sqrt.c | 142 | ||||
-rw-r--r-- | sysdeps/powerpc/e_sqrtf.c | 137 | ||||
-rw-r--r-- | sysdeps/powerpc/s_copysignf.S | 1 | ||||
-rw-r--r-- | sysdeps/powerpc/s_fabsf.S | 1 | ||||
-rw-r--r-- | sysdeps/powerpc/s_isnanf.S | 1 | ||||
-rw-r--r-- | sysdeps/powerpc/w_sqrt.c | 141 | ||||
-rw-r--r-- | sysdeps/powerpc/w_sqrtf.c | 136 |
7 files changed, 282 insertions, 277 deletions
diff --git a/sysdeps/powerpc/e_sqrt.c b/sysdeps/powerpc/e_sqrt.c index df80973f58..9416ea60c8 100644 --- a/sysdeps/powerpc/e_sqrt.c +++ b/sysdeps/powerpc/e_sqrt.c @@ -1,141 +1 @@ -/* Single-precision floating point square root. - Copyright (C) 1997 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Library General Public License as - published by the Free Software Foundation; either version 2 of the - License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Library General Public License for more details. - - You should have received a copy of the GNU Library General Public - License along with the GNU C Library; see the file COPYING.LIB. If not, - write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -#include <math.h> -#include <math_private.h> -#include <fenv_libc.h> -#include <inttypes.h> - -static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */ -static const uint32_t a_nan = 0x7fc00000; -static const uint32_t a_inf = 0x7f800000; -static const float two108 = 3.245185536584267269e+32; -static const float twom54 = 5.551115123125782702e-17; -extern const float __t_sqrt[1024]; - -/* The method is based on a description in - Computation of elementary functions on the IBM RISC System/6000 processor, - P. W. Markstein, IBM J. Res. Develop, 34(1) 1990. - Basically, it consists of two interleaved Newton-Rhapson approximations, - one to find the actual square root, and one to find its reciprocal - without the expense of a division operation. The tricky bit here - is the use of the POWER/PowerPC multiply-add operation to get the - required accuracy with high speed. - - The argument reduction works by a combination of table lookup to - obtain the initial guesses, and some careful modification of the - generated guesses (which mostly runs on the integer unit, while the - Newton-Rhapson is running on the FPU). */ -double -__sqrt(double x) -{ - const float inf = *(const float *)&a_inf; - /* x = f_wash(x); *//* This ensures only one exception for SNaN. */ - if (x > 0) - { - if (x != inf) - { - /* Variables named starting with 's' exist in the - argument-reduced space, so that 2 > sx >= 0.5, - 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... . - Variables named ending with 'i' are integer versions of - floating-point values. */ - double sx; /* The value of which we're trying to find the - square root. */ - double sg,g; /* Guess of the square root of x. */ - double sd,d; /* Difference between the square of the guess and x. */ - double sy; /* Estimate of 1/2g (overestimated by 1ulp). */ - double sy2; /* 2*sy */ - double e; /* Difference between y*g and 1/2 (se = e * fsy). */ - double shx; /* == sx * fsg */ - double fsg; /* sg*fsg == g. */ - fenv_t fe; /* Saved floating-point environment (stores rounding - mode and whether the inexact exception is - enabled). */ - uint32_t xi0, xi1, sxi, fsgi; - const float *t_sqrt; - - fe = fegetenv_register(); - EXTRACT_WORDS (xi0,xi1,x); - relax_fenv_state(); - sxi = xi0 & 0x3fffffff | 0x3fe00000; - INSERT_WORDS (sx, sxi, xi1); - t_sqrt = __t_sqrt + (xi0 >> 52-32-8-1 & 0x3fe); - sg = t_sqrt[0]; - sy = t_sqrt[1]; - - /* Here we have three Newton-Rhapson iterations each of a - division and a square root and the remainder of the - argument reduction, all interleaved. */ - sd = -(sg*sg - sx); - fsgi = xi0 + 0x40000000 >> 1 & 0x7ff00000; - sy2 = sy + sy; - sg = sy*sd + sg; /* 16-bit approximation to sqrt(sx). */ - INSERT_WORDS (fsg, fsgi, 0); - e = -(sy*sg - almost_half); - sd = -(sg*sg - sx); - if ((xi0 & 0x7ff00000) == 0) - goto denorm; - sy = sy + e*sy2; - sg = sg + sy*sd; /* 32-bit approximation to sqrt(sx). */ - sy2 = sy + sy; - e = -(sy*sg - almost_half); - sd = -(sg*sg - sx); - sy = sy + e*sy2; - shx = sx * fsg; - sg = sg + sy*sd; /* 64-bit approximation to sqrt(sx), - but perhaps rounded incorrectly. */ - sy2 = sy + sy; - g = sg * fsg; - e = -(sy*sg - almost_half); - d = -(g*sg - shx); - sy = sy + e*sy2; - fesetenv_register (fe); - return g + sy*d; - denorm: - /* For denormalised numbers, we normalise, calculate the - square root, and return an adjusted result. */ - fesetenv_register (fe); - return __sqrt(x * two108) * twom54; - } - } - else if (x < 0) - { -#ifdef FE_INVALID_SQRT - feraiseexcept (FE_INVALID_SQRT); - /* For some reason, some PowerPC processors don't implement - FE_INVALID_SQRT. I guess no-one ever thought they'd be - used for square roots... :-) */ - if (!fetestexcept (FE_INVALID)) -#endif - feraiseexcept (FE_INVALID); -#ifndef _IEEE_LIBM - if (_LIB_VERSION != _IEEE_) - x = __kernel_standard(x,x,26); - else -#endif - x = *(const float*)&a_nan; - } - return f_wash(x); -} - -weak_alias (__sqrt, sqrt) -/* Strictly, this is wrong, but the only places where _ieee754_sqrt is - used will not pass in a negative result. */ -strong_alias(__sqrt,__ieee754_sqrt) +/* __ieee754_sqrt is in w_sqrt.c */ diff --git a/sysdeps/powerpc/e_sqrtf.c b/sysdeps/powerpc/e_sqrtf.c index 804dff3c44..01c76d6757 100644 --- a/sysdeps/powerpc/e_sqrtf.c +++ b/sysdeps/powerpc/e_sqrtf.c @@ -1,136 +1 @@ -/* Single-precision floating point square root. - Copyright (C) 1997 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Library General Public License as - published by the Free Software Foundation; either version 2 of the - License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Library General Public License for more details. - - You should have received a copy of the GNU Library General Public - License along with the GNU C Library; see the file COPYING.LIB. If not, - write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -#include <math.h> -#include <math_private.h> -#include <fenv_libc.h> -#include <inttypes.h> - -static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */ -static const uint32_t a_nan = 0x7fc00000; -static const uint32_t a_inf = 0x7f800000; -static const float two48 = 281474976710656.0; -static const float twom24 = 5.9604644775390625e-8; -extern const float __t_sqrt[1024]; - -/* The method is based on a description in - Computation of elementary functions on the IBM RISC System/6000 processor, - P. W. Markstein, IBM J. Res. Develop, 34(1) 1990. - Basically, it consists of two interleaved Newton-Rhapson approximations, - one to find the actual square root, and one to find its reciprocal - without the expense of a division operation. The tricky bit here - is the use of the POWER/PowerPC multiply-add operation to get the - required accuracy with high speed. - - The argument reduction works by a combination of table lookup to - obtain the initial guesses, and some careful modification of the - generated guesses (which mostly runs on the integer unit, while the - Newton-Rhapson is running on the FPU). */ -float -__sqrtf(float x) -{ - const float inf = *(const float *)&a_inf; - /* x = f_washf(x); *//* This ensures only one exception for SNaN. */ - if (x > 0) - { - if (x != inf) - { - /* Variables named starting with 's' exist in the - argument-reduced space, so that 2 > sx >= 0.5, - 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... . - Variables named ending with 'i' are integer versions of - floating-point values. */ - float sx; /* The value of which we're trying to find the square - root. */ - float sg,g; /* Guess of the square root of x. */ - float sd,d; /* Difference between the square of the guess and x. */ - float sy; /* Estimate of 1/2g (overestimated by 1ulp). */ - float sy2; /* 2*sy */ - float e; /* Difference between y*g and 1/2 (note that e==se). */ - float shx; /* == sx * fsg */ - float fsg; /* sg*fsg == g. */ - fenv_t fe; /* Saved floating-point environment (stores rounding - mode and whether the inexact exception is - enabled). */ - uint32_t xi, sxi, fsgi; - const float *t_sqrt; - - GET_FLOAT_WORD (xi, x); - fe = fegetenv_register (); - relax_fenv_state (); - sxi = xi & 0x3fffffff | 0x3f000000; - SET_FLOAT_WORD (sx, sxi); - t_sqrt = __t_sqrt + (xi >> 23-8-1 & 0x3fe); - sg = t_sqrt[0]; - sy = t_sqrt[1]; - - /* Here we have three Newton-Rhapson iterations each of a - division and a square root and the remainder of the - argument reduction, all interleaved. */ - sd = -(sg*sg - sx); - fsgi = xi + 0x40000000 >> 1 & 0x7f800000; - sy2 = sy + sy; - sg = sy*sd + sg; /* 16-bit approximation to sqrt(sx). */ - e = -(sy*sg - almost_half); - SET_FLOAT_WORD (fsg, fsgi); - sd = -(sg*sg - sx); - sy = sy + e*sy2; - if ((xi & 0x7f800000) == 0) - goto denorm; - shx = sx * fsg; - sg = sg + sy*sd; /* 32-bit approximation to sqrt(sx), - but perhaps rounded incorrectly. */ - sy2 = sy + sy; - g = sg * fsg; - e = -(sy*sg - almost_half); - d = -(g*sg - shx); - sy = sy + e*sy2; - fesetenv_register (fe); - return g + sy*d; - denorm: - /* For denormalised numbers, we normalise, calculate the - square root, and return an adjusted result. */ - fesetenv_register (fe); - return __sqrtf(x * two48) * twom24; - } - } - else if (x < 0) - { -#ifdef FE_INVALID_SQRT - feraiseexcept (FE_INVALID_SQRT); - /* For some reason, some PowerPC processors don't implement - FE_INVALID_SQRT. I guess no-one ever thought they'd be - used for square roots... :-) */ - if (!fetestexcept (FE_INVALID)) -#endif - feraiseexcept (FE_INVALID); -#ifndef _IEEE_LIBM - if (_LIB_VERSION != _IEEE_) - x = __kernel_standard(x,x,126); - else -#endif - x = *(const float*)&a_nan; - } - return f_washf(x); -} - -weak_alias (__sqrtf, sqrtf) -/* Strictly, this is wrong, but the only places where _ieee754_sqrt is - used will not pass in a negative result. */ -strong_alias(__sqrtf,__ieee754_sqrtf) +/* __ieee754_sqrtf is in w_sqrtf.c */ diff --git a/sysdeps/powerpc/s_copysignf.S b/sysdeps/powerpc/s_copysignf.S new file mode 100644 index 0000000000..e05438ae7d --- /dev/null +++ b/sysdeps/powerpc/s_copysignf.S @@ -0,0 +1 @@ +/* __copysignf is in s_copysign.S */ diff --git a/sysdeps/powerpc/s_fabsf.S b/sysdeps/powerpc/s_fabsf.S new file mode 100644 index 0000000000..877c710ce8 --- /dev/null +++ b/sysdeps/powerpc/s_fabsf.S @@ -0,0 +1 @@ +/* __fabsf is in s_fabs.S */ diff --git a/sysdeps/powerpc/s_isnanf.S b/sysdeps/powerpc/s_isnanf.S new file mode 100644 index 0000000000..fc22f678a1 --- /dev/null +++ b/sysdeps/powerpc/s_isnanf.S @@ -0,0 +1 @@ +/* __isnanf is in s_isnan.c */ diff --git a/sysdeps/powerpc/w_sqrt.c b/sysdeps/powerpc/w_sqrt.c new file mode 100644 index 0000000000..df80973f58 --- /dev/null +++ b/sysdeps/powerpc/w_sqrt.c @@ -0,0 +1,141 @@ +/* Single-precision floating point square root. + Copyright (C) 1997 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include <math.h> +#include <math_private.h> +#include <fenv_libc.h> +#include <inttypes.h> + +static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */ +static const uint32_t a_nan = 0x7fc00000; +static const uint32_t a_inf = 0x7f800000; +static const float two108 = 3.245185536584267269e+32; +static const float twom54 = 5.551115123125782702e-17; +extern const float __t_sqrt[1024]; + +/* The method is based on a description in + Computation of elementary functions on the IBM RISC System/6000 processor, + P. W. Markstein, IBM J. Res. Develop, 34(1) 1990. + Basically, it consists of two interleaved Newton-Rhapson approximations, + one to find the actual square root, and one to find its reciprocal + without the expense of a division operation. The tricky bit here + is the use of the POWER/PowerPC multiply-add operation to get the + required accuracy with high speed. + + The argument reduction works by a combination of table lookup to + obtain the initial guesses, and some careful modification of the + generated guesses (which mostly runs on the integer unit, while the + Newton-Rhapson is running on the FPU). */ +double +__sqrt(double x) +{ + const float inf = *(const float *)&a_inf; + /* x = f_wash(x); *//* This ensures only one exception for SNaN. */ + if (x > 0) + { + if (x != inf) + { + /* Variables named starting with 's' exist in the + argument-reduced space, so that 2 > sx >= 0.5, + 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... . + Variables named ending with 'i' are integer versions of + floating-point values. */ + double sx; /* The value of which we're trying to find the + square root. */ + double sg,g; /* Guess of the square root of x. */ + double sd,d; /* Difference between the square of the guess and x. */ + double sy; /* Estimate of 1/2g (overestimated by 1ulp). */ + double sy2; /* 2*sy */ + double e; /* Difference between y*g and 1/2 (se = e * fsy). */ + double shx; /* == sx * fsg */ + double fsg; /* sg*fsg == g. */ + fenv_t fe; /* Saved floating-point environment (stores rounding + mode and whether the inexact exception is + enabled). */ + uint32_t xi0, xi1, sxi, fsgi; + const float *t_sqrt; + + fe = fegetenv_register(); + EXTRACT_WORDS (xi0,xi1,x); + relax_fenv_state(); + sxi = xi0 & 0x3fffffff | 0x3fe00000; + INSERT_WORDS (sx, sxi, xi1); + t_sqrt = __t_sqrt + (xi0 >> 52-32-8-1 & 0x3fe); + sg = t_sqrt[0]; + sy = t_sqrt[1]; + + /* Here we have three Newton-Rhapson iterations each of a + division and a square root and the remainder of the + argument reduction, all interleaved. */ + sd = -(sg*sg - sx); + fsgi = xi0 + 0x40000000 >> 1 & 0x7ff00000; + sy2 = sy + sy; + sg = sy*sd + sg; /* 16-bit approximation to sqrt(sx). */ + INSERT_WORDS (fsg, fsgi, 0); + e = -(sy*sg - almost_half); + sd = -(sg*sg - sx); + if ((xi0 & 0x7ff00000) == 0) + goto denorm; + sy = sy + e*sy2; + sg = sg + sy*sd; /* 32-bit approximation to sqrt(sx). */ + sy2 = sy + sy; + e = -(sy*sg - almost_half); + sd = -(sg*sg - sx); + sy = sy + e*sy2; + shx = sx * fsg; + sg = sg + sy*sd; /* 64-bit approximation to sqrt(sx), + but perhaps rounded incorrectly. */ + sy2 = sy + sy; + g = sg * fsg; + e = -(sy*sg - almost_half); + d = -(g*sg - shx); + sy = sy + e*sy2; + fesetenv_register (fe); + return g + sy*d; + denorm: + /* For denormalised numbers, we normalise, calculate the + square root, and return an adjusted result. */ + fesetenv_register (fe); + return __sqrt(x * two108) * twom54; + } + } + else if (x < 0) + { +#ifdef FE_INVALID_SQRT + feraiseexcept (FE_INVALID_SQRT); + /* For some reason, some PowerPC processors don't implement + FE_INVALID_SQRT. I guess no-one ever thought they'd be + used for square roots... :-) */ + if (!fetestexcept (FE_INVALID)) +#endif + feraiseexcept (FE_INVALID); +#ifndef _IEEE_LIBM + if (_LIB_VERSION != _IEEE_) + x = __kernel_standard(x,x,26); + else +#endif + x = *(const float*)&a_nan; + } + return f_wash(x); +} + +weak_alias (__sqrt, sqrt) +/* Strictly, this is wrong, but the only places where _ieee754_sqrt is + used will not pass in a negative result. */ +strong_alias(__sqrt,__ieee754_sqrt) diff --git a/sysdeps/powerpc/w_sqrtf.c b/sysdeps/powerpc/w_sqrtf.c new file mode 100644 index 0000000000..804dff3c44 --- /dev/null +++ b/sysdeps/powerpc/w_sqrtf.c @@ -0,0 +1,136 @@ +/* Single-precision floating point square root. + Copyright (C) 1997 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include <math.h> +#include <math_private.h> +#include <fenv_libc.h> +#include <inttypes.h> + +static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */ +static const uint32_t a_nan = 0x7fc00000; +static const uint32_t a_inf = 0x7f800000; +static const float two48 = 281474976710656.0; +static const float twom24 = 5.9604644775390625e-8; +extern const float __t_sqrt[1024]; + +/* The method is based on a description in + Computation of elementary functions on the IBM RISC System/6000 processor, + P. W. Markstein, IBM J. Res. Develop, 34(1) 1990. + Basically, it consists of two interleaved Newton-Rhapson approximations, + one to find the actual square root, and one to find its reciprocal + without the expense of a division operation. The tricky bit here + is the use of the POWER/PowerPC multiply-add operation to get the + required accuracy with high speed. + + The argument reduction works by a combination of table lookup to + obtain the initial guesses, and some careful modification of the + generated guesses (which mostly runs on the integer unit, while the + Newton-Rhapson is running on the FPU). */ +float +__sqrtf(float x) +{ + const float inf = *(const float *)&a_inf; + /* x = f_washf(x); *//* This ensures only one exception for SNaN. */ + if (x > 0) + { + if (x != inf) + { + /* Variables named starting with 's' exist in the + argument-reduced space, so that 2 > sx >= 0.5, + 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... . + Variables named ending with 'i' are integer versions of + floating-point values. */ + float sx; /* The value of which we're trying to find the square + root. */ + float sg,g; /* Guess of the square root of x. */ + float sd,d; /* Difference between the square of the guess and x. */ + float sy; /* Estimate of 1/2g (overestimated by 1ulp). */ + float sy2; /* 2*sy */ + float e; /* Difference between y*g and 1/2 (note that e==se). */ + float shx; /* == sx * fsg */ + float fsg; /* sg*fsg == g. */ + fenv_t fe; /* Saved floating-point environment (stores rounding + mode and whether the inexact exception is + enabled). */ + uint32_t xi, sxi, fsgi; + const float *t_sqrt; + + GET_FLOAT_WORD (xi, x); + fe = fegetenv_register (); + relax_fenv_state (); + sxi = xi & 0x3fffffff | 0x3f000000; + SET_FLOAT_WORD (sx, sxi); + t_sqrt = __t_sqrt + (xi >> 23-8-1 & 0x3fe); + sg = t_sqrt[0]; + sy = t_sqrt[1]; + + /* Here we have three Newton-Rhapson iterations each of a + division and a square root and the remainder of the + argument reduction, all interleaved. */ + sd = -(sg*sg - sx); + fsgi = xi + 0x40000000 >> 1 & 0x7f800000; + sy2 = sy + sy; + sg = sy*sd + sg; /* 16-bit approximation to sqrt(sx). */ + e = -(sy*sg - almost_half); + SET_FLOAT_WORD (fsg, fsgi); + sd = -(sg*sg - sx); + sy = sy + e*sy2; + if ((xi & 0x7f800000) == 0) + goto denorm; + shx = sx * fsg; + sg = sg + sy*sd; /* 32-bit approximation to sqrt(sx), + but perhaps rounded incorrectly. */ + sy2 = sy + sy; + g = sg * fsg; + e = -(sy*sg - almost_half); + d = -(g*sg - shx); + sy = sy + e*sy2; + fesetenv_register (fe); + return g + sy*d; + denorm: + /* For denormalised numbers, we normalise, calculate the + square root, and return an adjusted result. */ + fesetenv_register (fe); + return __sqrtf(x * two48) * twom24; + } + } + else if (x < 0) + { +#ifdef FE_INVALID_SQRT + feraiseexcept (FE_INVALID_SQRT); + /* For some reason, some PowerPC processors don't implement + FE_INVALID_SQRT. I guess no-one ever thought they'd be + used for square roots... :-) */ + if (!fetestexcept (FE_INVALID)) +#endif + feraiseexcept (FE_INVALID); +#ifndef _IEEE_LIBM + if (_LIB_VERSION != _IEEE_) + x = __kernel_standard(x,x,126); + else +#endif + x = *(const float*)&a_nan; + } + return f_washf(x); +} + +weak_alias (__sqrtf, sqrtf) +/* Strictly, this is wrong, but the only places where _ieee754_sqrt is + used will not pass in a negative result. */ +strong_alias(__sqrtf,__ieee754_sqrtf) |