aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2000-10-25 22:17:16 +0000
committerUlrich Drepper <drepper@redhat.com>2000-10-25 22:17:16 +0000
commit106599818f03d43df1cf58e236bd3969e4691fa5 (patch)
treee8e8c8de035fe5bb92e014f23ac5fa983b49dfd9 /sysdeps/ieee754/dbl-64
parent6a39d02719ff34c9f51dd3049add71086572da5a (diff)
downloadglibc-106599818f03d43df1cf58e236bd3969e4691fa5.tar
glibc-106599818f03d43df1cf58e236bd3969e4691fa5.tar.gz
glibc-106599818f03d43df1cf58e236bd3969e4691fa5.tar.bz2
glibc-106599818f03d43df1cf58e236bd3969e4691fa5.zip
Update.
2000-10-25 Ulrich Drepper <drepper@redhat.com> * sysdeps/ieee754/dbl-64/e_jn.c: Use __ieee754_sqrt instead of __sqrt. * sysdeps/ieee754/dbl-64/e_j1.c: Likewise. * sysdeps/ieee754/dbl-64/e_j0.c: Likewise. * sysdeps/ieee754/flt-32/e_j1f.c: Likewise. * sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r--sysdeps/ieee754/dbl-64/e_j0.c8
-rw-r--r--sysdeps/ieee754/dbl-64/e_j1.c8
-rw-r--r--sysdeps/ieee754/dbl-64/e_jn.c46
3 files changed, 31 insertions, 31 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_j0.c b/sysdeps/ieee754/dbl-64/e_j0.c
index 55e8294bb9..00caf3f0d3 100644
--- a/sysdeps/ieee754/dbl-64/e_j0.c
+++ b/sysdeps/ieee754/dbl-64/e_j0.c
@@ -124,10 +124,10 @@ static double zero = 0.0;
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
- if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(x);
+ if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x);
else {
u = pzero(x); v = qzero(x);
- z = invsqrtpi*(u*cc-v*ss)/__sqrt(x);
+ z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x);
}
return z;
}
@@ -215,10 +215,10 @@ V[] = {1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
- if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
+ if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
else {
u = pzero(x); v = qzero(x);
- z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
+ z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
}
return z;
}
diff --git a/sysdeps/ieee754/dbl-64/e_j1.c b/sysdeps/ieee754/dbl-64/e_j1.c
index daf025fdb7..f5f5c28830 100644
--- a/sysdeps/ieee754/dbl-64/e_j1.c
+++ b/sysdeps/ieee754/dbl-64/e_j1.c
@@ -125,10 +125,10 @@ static double zero = 0.0;
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
- if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y);
+ if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y);
else {
u = pone(y); v = qone(y);
- z = invsqrtpi*(u*cc-v*ss)/__sqrt(y);
+ z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
}
if(hx<0) return -z;
else return z;
@@ -214,10 +214,10 @@ static double V0[5] = {
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
- if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
+ if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
else {
u = pone(x); v = qone(x);
- z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
+ z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
}
return z;
}
diff --git a/sysdeps/ieee754/dbl-64/e_jn.c b/sysdeps/ieee754/dbl-64/e_jn.c
index d63d7688a3..68abc90462 100644
--- a/sysdeps/ieee754/dbl-64/e_jn.c
+++ b/sysdeps/ieee754/dbl-64/e_jn.c
@@ -5,7 +5,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -18,7 +18,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
- *
+ *
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
@@ -37,7 +37,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
- *
+ *
*/
#include "math.h"
@@ -76,7 +76,7 @@ static double zero = 0.00000000000000000000e+00;
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
- if(n<0){
+ if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
@@ -87,13 +87,13 @@ static double zero = 0.00000000000000000000e+00;
x = fabs(x);
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
b = zero;
- else if((double)n<=x) {
+ else if((double)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if(ix>=0x52D00000) { /* x > 2**302 */
- /* (x >> n**2)
+ /* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
+ * Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
@@ -109,8 +109,8 @@ static double zero = 0.00000000000000000000e+00;
case 2: temp = -__cos(x)-__sin(x); break;
case 3: temp = __cos(x)-__sin(x); break;
}
- b = invsqrtpi*temp/__sqrt(x);
- } else {
+ b = invsqrtpi*temp/__ieee754_sqrt(x);
+ } else {
a = __ieee754_j0(x);
b = __ieee754_j1(x);
for(i=1;i<n;i++){
@@ -121,7 +121,7 @@ static double zero = 0.00000000000000000000e+00;
}
} else {
if(ix<0x3e100000) { /* x < 2**-29 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
+ /* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
@@ -136,14 +136,14 @@ static double zero = 0.00000000000000000000e+00;
}
} else {
/* use backward recurrence */
- /* x x^2 x^2
+ /* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
- * 1 1 1
+ * 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
+ * -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
@@ -159,9 +159,9 @@ static double zero = 0.00000000000000000000e+00;
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
@@ -183,7 +183,7 @@ static double zero = 0.00000000000000000000e+00;
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
+ * then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
@@ -219,9 +219,9 @@ static double zero = 0.00000000000000000000e+00;
}
#ifdef __STDC__
- double __ieee754_yn(int n, double x)
+ double __ieee754_yn(int n, double x)
#else
- double __ieee754_yn(n,x)
+ double __ieee754_yn(n,x)
int n; double x;
#endif
{
@@ -244,10 +244,10 @@ static double zero = 0.00000000000000000000e+00;
if(n==1) return(sign*__ieee754_y1(x));
if(ix==0x7ff00000) return zero;
if(ix>=0x52D00000) { /* x > 2**302 */
- /* (x >> n**2)
+ /* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
+ * Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
@@ -263,14 +263,14 @@ static double zero = 0.00000000000000000000e+00;
case 2: temp = -__sin(x)+__cos(x); break;
case 3: temp = __sin(x)+__cos(x); break;
}
- b = invsqrtpi*temp/__sqrt(x);
+ b = invsqrtpi*temp/__ieee754_sqrt(x);
} else {
u_int32_t high;
a = __ieee754_y0(x);
b = __ieee754_y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(high,b);
- for(i=1;i<n&&high!=0xfff00000;i++){
+ for(i=1;i<n&&high!=0xfff00000;i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
GET_HIGH_WORD(high,b);