diff options
author | Ulrich Drepper <drepper@redhat.com> | 2001-03-12 07:57:09 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 2001-03-12 07:57:09 +0000 |
commit | 50944bca4bfeefc5de2ec205ad549eb669ed1008 (patch) | |
tree | 8b9a7141aef238c00893d27a39d3a34247374a82 /sysdeps/ieee754/dbl-64/sincos32.c | |
parent | 445028e348508c6bcf7cc41ffab4af1b984a11d2 (diff) | |
download | glibc-50944bca4bfeefc5de2ec205ad549eb669ed1008.tar glibc-50944bca4bfeefc5de2ec205ad549eb669ed1008.tar.gz glibc-50944bca4bfeefc5de2ec205ad549eb669ed1008.tar.bz2 glibc-50944bca4bfeefc5de2ec205ad549eb669ed1008.zip |
Fix warnings.
Diffstat (limited to 'sysdeps/ieee754/dbl-64/sincos32.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/sincos32.c | 116 |
1 files changed, 64 insertions, 52 deletions
diff --git a/sysdeps/ieee754/dbl-64/sincos32.c b/sysdeps/ieee754/dbl-64/sincos32.c index 41fe2f281a..6e8c9d5530 100644 --- a/sysdeps/ieee754/dbl-64/sincos32.c +++ b/sysdeps/ieee754/dbl-64/sincos32.c @@ -5,9 +5,9 @@ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2 of the License, or + * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. - * + * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -15,7 +15,7 @@ * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /****************************************************************/ /* MODULE_NAME: sincos32.c */ @@ -48,11 +48,17 @@ /* Compute Multi-Precision sin() function for given p. Receive */ /* Multi Precision number x and result stored at y */ /****************************************************************/ -void ss32(mp_no *x, mp_no *y, int p) { +static void ss32(mp_no *x, mp_no *y, int p) { int i; - double a,b; - static const mp_no mpone = {1,1.0,1.0}; - mp_no mpt1,mpt2,x2,gor,sum ,mpk={1,1.0}; + double a; +#if 0 + double b; + static const mp_no mpone = {1,{1.0,1.0}}; +#endif + mp_no mpt1,x2,gor,sum ,mpk={1,{1.0}}; +#if 0 + mp_no mpt2; +#endif for (i=1;i<=p;i++) mpk.d[i]=0; mul(x,x,&x2,p); @@ -72,11 +78,17 @@ void ss32(mp_no *x, mp_no *y, int p) { /* Compute Multi-Precision cos() function for given p. Receive Multi */ /* Precision number x and result stored at y */ /**********************************************************************/ -void cc32(mp_no *x, mp_no *y, int p) { +static void cc32(mp_no *x, mp_no *y, int p) { int i; - double a,b; - static const mp_no mpone = {1,1.0,1.0}; - mp_no mpt1,mpt2,x2,gor,sum ,mpk={1,1.0}; + double a; +#if 0 + double b; + static const mp_no mpone = {1,{1.0,1.0}}; +#endif + mp_no mpt1,x2,gor,sum ,mpk={1,{1.0}}; +#if 0 + mp_no mpt2; +#endif for (i=1;i<=p;i++) mpk.d[i]=0; mul(x,x,&x2,p); @@ -96,8 +108,8 @@ void cc32(mp_no *x, mp_no *y, int p) { /***************************************************************************/ /* c32() computes both sin(x), cos(x) as Multi precision numbers */ /***************************************************************************/ -void c32(mp_no *x, mp_no *y, mp_no *z, int p) { - static const mp_no mpt={1,1.0,2.0}, one={1,1.0,1.0}; +void __c32(mp_no *x, mp_no *y, mp_no *z, int p) { + static const mp_no mpt={1,{1.0,2.0}}, one={1,{1.0,1.0}}; mp_no u,t,t1,t2,c,s; int i; cpy(x,&u,p); @@ -121,7 +133,7 @@ void c32(mp_no *x, mp_no *y, mp_no *z, int p) { /*result which is more accurate */ /*Computing sin(x) with multi precision routine c32 */ /************************************************************************/ -double sin32(double x, double res, double res1) { +double __sin32(double x, double res, double res1) { int p; mp_no a,b,c; p=32; @@ -130,11 +142,11 @@ double sin32(double x, double res, double res1) { add(&a,&b,&c,p); if (x>0.8) { sub(&hp,&c,&a,p); - c32(&a,&b,&c,p); + __c32(&a,&b,&c,p); } - else c32(&c,&a,&b,p); /* b=sin(0.5*(res+res1)) */ + else __c32(&c,&a,&b,p); /* b=sin(0.5*(res+res1)) */ dbl_mp(x,&c,p); /* c = x */ - sub(&b,&c,&a,p); + sub(&b,&c,&a,p); /* if a>0 return min(res,res1), otherwise return max(res,res1) */ if (a.d[0]>0) return (res<res1)?res:res1; else return (res>res1)?res:res1; @@ -145,7 +157,7 @@ double sin32(double x, double res, double res1) { /*result which is more accurate */ /*Computing cos(x) with multi precision routine c32 */ /************************************************************************/ -double cos32(double x, double res, double res1) { +double __cos32(double x, double res, double res1) { int p; mp_no a,b,c; p=32; @@ -154,14 +166,14 @@ double cos32(double x, double res, double res1) { add(&a,&b,&c,p); if (x>2.4) { sub(&pi,&c,&a,p); - c32(&a,&b,&c,p); + __c32(&a,&b,&c,p); b.d[0]=-b.d[0]; } - else if (x>0.8) + else if (x>0.8) { sub(&hp,&c,&a,p); - c32(&a,&c,&b,p); + __c32(&a,&c,&b,p); } - else c32(&c,&b,&a,p); /* b=cos(0.5*(res+res1)) */ + else __c32(&c,&b,&a,p); /* b=cos(0.5*(res+res1)) */ dbl_mp(x,&c,p); /* c = x */ sub(&b,&c,&a,p); /* if a>0 return max(res,res1), otherwise return min(res,res1) */ @@ -173,7 +185,7 @@ double cos32(double x, double res, double res1) { /*Compute sin(x+dx) as Multi Precision number and return result as */ /* double */ /*******************************************************************/ -double mpsin(double x, double dx) { +double __mpsin(double x, double dx) { int p; double y; mp_no a,b,c; @@ -181,9 +193,9 @@ double mpsin(double x, double dx) { dbl_mp(x,&a,p); dbl_mp(dx,&b,p); add(&a,&b,&c,p); - if (x>0.8) { sub(&hp,&c,&a,p); c32(&a,&b,&c,p); } - else c32(&c,&a,&b,p); /* b = sin(x+dx) */ - mp_dbl(&b,&y,p); + if (x>0.8) { sub(&hp,&c,&a,p); __c32(&a,&b,&c,p); } + else __c32(&c,&a,&b,p); /* b = sin(x+dx) */ + __mp_dbl(&b,&y,p); return y; } @@ -191,7 +203,7 @@ double mpsin(double x, double dx) { /* Compute cos()of double-length number (x+dx) as Multi Precision */ /* number and return result as double */ /*******************************************************************/ -double mpcos(double x, double dx) { +double __mpcos(double x, double dx) { int p; double y; mp_no a,b,c; @@ -199,12 +211,12 @@ double mpcos(double x, double dx) { dbl_mp(x,&a,p); dbl_mp(dx,&b,p); add(&a,&b,&c,p); - if (x>0.8) + if (x>0.8) { sub(&hp,&c,&b,p); - c32(&b,&a,&c,p); + __c32(&b,&a,&c,p); } - else c32(&c,&a,&b,p); /* a = cos(x+dx) */ - mp_dbl(&a,&y,p); + else __c32(&c,&a,&b,p); /* a = cos(x+dx) */ + __mp_dbl(&a,&y,p); return y; } @@ -219,9 +231,9 @@ int mpranred(double x, mp_no *y, int p) number v; double t,xn; int i,k,n; - static const mp_no one = {1,1.0,1.0}; + static const mp_no one = {1,{1.0,1.0}}; mp_no a,b,c; - + if (ABS(x) < 2.8e14) { t = (x*hpinv.d + toint.d); xn = t - toint.d; @@ -246,7 +258,7 @@ int mpranred(double x, mp_no *y, int p) for (i=1;i<=p-c.e;i++) c.d[i]=c.d[i+c.e]; for (i=p+1-c.e;i<=p;i++) c.d[i]=0; c.e=0; - if (c.d[1] >= 8388608.0) + if (c.d[1] >= 8388608.0) { t +=1.0; sub(&c,&one,&b,p); mul(&b,&hp,y,p); @@ -270,28 +282,28 @@ double mpsin1(double x) double y; p=32; n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */ - c32(&u,&c,&s,p); + __c32(&u,&c,&s,p); switch (n) { /* in which quarter of unit circle y is*/ case 0: - mp_dbl(&s,&y,p); + __mp_dbl(&s,&y,p); return y; break; case 2: - mp_dbl(&s,&y,p); + __mp_dbl(&s,&y,p); return -y; break; case 1: - mp_dbl(&c,&y,p); + __mp_dbl(&c,&y,p); return y; break; - + case 3: - mp_dbl(&c,&y,p); + __mp_dbl(&c,&y,p); return -y; break; - + } return 0; /* unreachable, to make the compiler happy */ } @@ -307,32 +319,32 @@ double mpcos1(double x) int n; mp_no u,s,c; double y; - + p=32; n=mpranred(x,&u,p); /* n is 0, 1, 2 or 3 */ - c32(&u,&c,&s,p); + __c32(&u,&c,&s,p); switch (n) { /* in what quarter of unit circle y is*/ - + case 0: - mp_dbl(&c,&y,p); + __mp_dbl(&c,&y,p); return y; break; - + case 2: - mp_dbl(&c,&y,p); + __mp_dbl(&c,&y,p); return -y; break; - + case 1: - mp_dbl(&s,&y,p); + __mp_dbl(&s,&y,p); return -y; break; - + case 3: - mp_dbl(&s,&y,p); + __mp_dbl(&s,&y,p); return y; break; - + } return 0; /* unreachable, to make the compiler happy */ } |