aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/i386/fpu/s_cexpl.S
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
committerUlrich Drepper <drepper@redhat.com>1999-07-14 00:54:57 +0000
commitabfbdde177c3a7155070dda1b2cdc8292054cc26 (patch)
treee021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/i386/fpu/s_cexpl.S
parent86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff)
downloadglibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.bz2
glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip
Update.
Diffstat (limited to 'sysdeps/i386/fpu/s_cexpl.S')
-rw-r--r--sysdeps/i386/fpu/s_cexpl.S262
1 files changed, 262 insertions, 0 deletions
diff --git a/sysdeps/i386/fpu/s_cexpl.S b/sysdeps/i386/fpu/s_cexpl.S
new file mode 100644
index 0000000000..203a7ee779
--- /dev/null
+++ b/sysdeps/i386/fpu/s_cexpl.S
@@ -0,0 +1,262 @@
+/* ix87 specific implementation of complex exponential function for double.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <sysdep.h>
+
+#ifdef __ELF__
+ .section .rodata
+#else
+ .text
+#endif
+ .align ALIGNARG(4)
+ ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object)
+huge_nan_null_null:
+ .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
+ .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f
+ .double 0.0
+zero: .double 0.0
+infinity:
+ .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
+ .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f
+ .double 0.0
+ .byte 0, 0, 0, 0, 0, 0, 0, 0x80
+ ASM_SIZE_DIRECTIVE(huge_nan_null_null)
+
+ ASM_TYPE_DIRECTIVE(twopi,@object)
+twopi:
+ .byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40
+ .byte 0, 0, 0, 0, 0, 0
+ ASM_SIZE_DIRECTIVE(twopi)
+
+ ASM_TYPE_DIRECTIVE(l2e,@object)
+l2e:
+ .byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f
+ .byte 0, 0, 0, 0, 0, 0
+ ASM_SIZE_DIRECTIVE(l2e)
+
+ ASM_TYPE_DIRECTIVE(one,@object)
+one: .double 1.0
+ ASM_SIZE_DIRECTIVE(one)
+
+
+#ifdef PIC
+#define MO(op) op##@GOTOFF(%ecx)
+#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
+#else
+#define MO(op) op
+#define MOX(op,x,f) op(,x,f)
+#endif
+
+ .text
+ENTRY(__cexpl)
+ fldt 8(%esp) /* x */
+ fxam
+ fnstsw
+ fldt 20(%esp) /* y : x */
+#ifdef PIC
+ call 1f
+1: popl %ecx
+ addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
+#endif
+ movb %ah, %dh
+ andb $0x45, %ah
+ cmpb $0x05, %ah
+ je 1f /* Jump if real part is +-Inf */
+ cmpb $0x01, %ah
+ je 2f /* Jump if real part is NaN */
+
+ fxam /* y : x */
+ fnstsw
+ /* If the imaginary part is not finite we return NaN+i NaN, as
+ for the case when the real part is NaN. A test for +-Inf and
+ NaN would be necessary. But since we know the stack register
+ we applied `fxam' to is not empty we can simply use one test.
+ Check your FPU manual for more information. */
+ andb $0x01, %ah
+ cmpb $0x01, %ah
+ je 20f
+
+ /* We have finite numbers in the real and imaginary part. Do
+ the real work now. */
+ fxch /* x : y */
+ fldt MO(l2e) /* log2(e) : x : y */
+ fmulp /* x * log2(e) : y */
+ fld %st /* x * log2(e) : x * log2(e) : y */
+ frndint /* int(x * log2(e)) : x * log2(e) : y */
+ fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */
+ fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */
+ f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */
+ faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */
+ fscale /* e^x : int(x * log2(e)) : y */
+ fst %st(1) /* e^x : e^x : y */
+ fxch %st(2) /* y : e^x : e^x */
+ fsincos /* cos(y) : sin(y) : e^x : e^x */
+ fnstsw
+ testl $0x400, %eax
+ jnz 7f
+ fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */
+ fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */
+ movl 4(%esp), %eax /* Pointer to memory for result. */
+ fstpt 12(%eax)
+ fstpt (%eax)
+ ret $4
+
+ /* We have to reduce the argument to fsincos. */
+ .align ALIGNARG(4)
+7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */
+ fxch /* y : 2*pi : e^x : e^x */
+8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */
+ fnstsw
+ testl $0x400, %eax
+ jnz 8b
+ fstp %st(1) /* y%(2*pi) : e^x : e^x */
+ fsincos /* cos(y) : sin(y) : e^x : e^x */
+ fmulp %st, %st(3)
+ fmulp %st, %st(1)
+ movl 4(%esp), %eax /* Pointer to memory for result. */
+ fstpt 12(%eax)
+ fstpt (%eax)
+ ret $4
+
+ /* The real part is +-inf. We must make further differences. */
+ .align ALIGNARG(4)
+1: fxam /* y : x */
+ fnstsw
+ movb %ah, %dl
+ testb $0x01, %ah /* See above why 0x01 is usable here. */
+ jne 3f
+
+
+ /* The real part is +-Inf and the imaginary part is finite. */
+ andl $0x245, %edx
+ cmpb $0x40, %dl /* Imaginary part == 0? */
+ je 4f /* Yes -> */
+
+ fxch /* x : y */
+ shrl $5, %edx
+ fstp %st(0) /* y */ /* Drop the real part. */
+ andl $16, %edx /* This puts the sign bit of the real part
+ in bit 4. So we can use it to index a
+ small array to select 0 or Inf. */
+ fsincos /* cos(y) : sin(y) */
+ fnstsw
+ testl $0x0400, %eax
+ jnz 5f
+ fldl MOX(huge_nan_null_null,%edx,1)
+ movl 4(%esp), %edx /* Pointer to memory for result. */
+ fld %st
+ fstpt 12(%edx)
+ fstpt (%edx)
+ ftst
+ fnstsw
+ shll $7, %eax
+ andl $0x8000, %eax
+ orl %eax, 8(%edx)
+ fstp %st(0)
+ ftst
+ fnstsw
+ shll $7, %eax
+ andl $0x8000, %eax
+ orl %eax, 20(%edx)
+ fstp %st(0)
+ ret $4
+ /* We must reduce the argument to fsincos. */
+ .align ALIGNARG(4)
+5: fldt MO(twopi)
+ fxch
+6: fprem1
+ fnstsw
+ testl $0x400, %eax
+ jnz 6b
+ fstp %st(1)
+ fsincos
+ fldl MOX(huge_nan_null_null,%edx,1)
+ movl 4(%esp), %edx /* Pointer to memory for result. */
+ fld %st
+ fstpt 12(%edx)
+ fstpt (%edx)
+ ftst
+ fnstsw
+ shll $7, %eax
+ andl $0x8000, %eax
+ orl %eax, 8(%edx)
+ fstp %st(0)
+ ftst
+ fnstsw
+ shll $7, %eax
+ andl $0x8000, %eax
+ orl %eax, 20(%edx)
+ fstp %st(0)
+ ret $4
+
+ /* The real part is +-Inf and the imaginary part is +-0. So return
+ +-Inf+-0i. */
+ .align ALIGNARG(4)
+4: movl 4(%esp), %eax /* Pointer to memory for result. */
+ fstpt 12(%eax)
+ shrl $5, %edx
+ fstp %st(0)
+ andl $16, %edx
+ fldl MOX(huge_nan_null_null,%edx,1)
+ fstpt (%eax)
+ ret $4
+
+ /* The real part is +-Inf, the imaginary is also is not finite. */
+ .align ALIGNARG(4)
+3: fstp %st(0)
+ fstp %st(0) /* <empty> */
+ andb $0x45, %ah
+ andb $0x47, %dh
+ xorb %dh, %ah
+ jnz 30f
+ fldl MO(infinity) /* Raise invalid exception. */
+ fmull MO(zero)
+ fstp %st(0)
+30: movl %edx, %eax
+ shrl $5, %edx
+ shll $4, %eax
+ andl $16, %edx
+ andl $32, %eax
+ orl %eax, %edx
+ movl 4(%esp), %eax /* Pointer to memory for result. */
+
+ fldl MOX(huge_nan_null_null,%edx,1)
+ fldl MOX(huge_nan_null_null+8,%edx,1)
+ fxch
+ fstpt (%eax)
+ fstpt 12(%eax)
+ ret $4
+
+ /* The real part is NaN. */
+ .align ALIGNARG(4)
+20: fldl MO(infinity) /* Raise invalid exception. */
+ fmull MO(zero)
+ fstp %st(0)
+2: fstp %st(0)
+ fstp %st(0)
+ movl 4(%esp), %eax /* Pointer to memory for result. */
+ fldl MO(huge_nan_null_null+8)
+ fld %st(0)
+ fstpt (%eax)
+ fstpt 12(%eax)
+ ret $4
+
+END(__cexpl)
+weak_alias (__cexpl, cexpl)