diff options
author | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 1999-07-14 00:54:57 +0000 |
commit | abfbdde177c3a7155070dda1b2cdc8292054cc26 (patch) | |
tree | e021306b596381fbf8311d2b7eb294e918ff17c8 /sysdeps/i386/fpu/e_acoshl.S | |
parent | 86421aa57ecfd70963ae66848bd6a6dd3b8e0fe6 (diff) | |
download | glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.gz glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.tar.bz2 glibc-abfbdde177c3a7155070dda1b2cdc8292054cc26.zip |
Update.
Diffstat (limited to 'sysdeps/i386/fpu/e_acoshl.S')
-rw-r--r-- | sysdeps/i386/fpu/e_acoshl.S | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/sysdeps/i386/fpu/e_acoshl.S b/sysdeps/i386/fpu/e_acoshl.S new file mode 100644 index 0000000000..0c81daaebe --- /dev/null +++ b/sysdeps/i386/fpu/e_acoshl.S @@ -0,0 +1,112 @@ +/* ix87 specific implementation of arcsinh. + Copyright (C) 1996, 1997 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +#include <machine/asm.h> + +#ifdef __ELF__ + .section .rodata +#else + .text +#endif + + .align ALIGNARG(4) + /* Please note that we use double value for 1.0. This number + has an exact representation and so we don't get accuracy + problems. The advantage is that the code is simpler. */ + ASM_TYPE_DIRECTIVE(one,@object) +one: .double 1.0 + ASM_SIZE_DIRECTIVE(one) + /* It is not important that this constant is precise. It is only + a value which is known to be on the safe side for using the + fyl2xp1 instruction. */ + ASM_TYPE_DIRECTIVE(limit,@object) +limit: .double 0.29 + ASM_SIZE_DIRECTIVE(limit) + +#ifdef PIC +#define MO(op) op##@GOTOFF(%edx) +#else +#define MO(op) op +#endif + + .text +ENTRY(__ieee754_acoshl) + movl 12(%esp), %ecx + andl $0xffff, %ecx + cmpl $0x3fff, %ecx + jl 5f // < 1 => invalid + fldln2 // log(2) + fldt 4(%esp) // x : log(2) + cmpl $0x4020, %ecx + ja 3f // x > 2^34 +#ifdef PIC + call 1f +1: popl %edx + addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %edx +#endif + cmpl $0x4000, %ecx + ja 4f // x > 2 + + // 1 <= x <= 2 => y = log1p(x-1+sqrt(2*(x-1)+(x-1)^2)) + fsubl MO(one) // x-1 : log(2) + fld %st // x-1 : x-1 : log(2) + fmul %st(1) // (x-1)^2 : x-1 : log(2) + fadd %st(1) // x-1+(x-1)^2 : x-1 : log(2) + fadd %st(1) // 2*(x-1)+(x-1)^2 : x-1 : log(2) + fsqrt // sqrt(2*(x-1)+(x-1)^2) : x-1 : log(2) + faddp // x-1+sqrt(2*(x-1)+(x-1)^2) : log(2) + fcoml MO(limit) + fnstsw + sahf + ja 2f + fyl2xp1 // log1p(x-1+sqrt(2*(x-1)+(x-1)^2)) + ret + +2: faddl MO(one) // x+sqrt(2*(x-1)+(x-1)^2) : log(2) + fyl2x // log(x+sqrt(2*(x-1)+(x-1)^2)) + ret + + // x > 2^34 => y = log(x) + log(2) + .align ALIGNARG(4) +3: fyl2x // log(x) + fldln2 // log(2) : log(x) + faddp // log(x)+log(2) + ret + + // 2^34 > x > 2 => y = log(2*x - 1/(x+sqrt(x*x-1))) + .align ALIGNARG(4) +4: fld %st // x : x : log(2) + fadd %st, %st(1) // x : 2*x : log(2) + fld %st // x : x : 2*x : log(2) + fmul %st(1) // x^2 : x : 2*x : log(2) + fsubl MO(one) // x^2-1 : x : 2*x : log(2) + fsqrt // sqrt(x^2-1) : x : 2*x : log(2) + faddp // x+sqrt(x^2-1) : 2*x : log(2) + fdivrl MO(one) // 1/(x+sqrt(x^2-1)) : 2*x : log(2) + fsubrp // 2*x+1/(x+sqrt(x^2)-1) : log(2) + fyl2x // log(2*x+1/(x+sqrt(x^2-1))) + ret + + // x < 1 => NaN + .align ALIGNARG(4) +5: fldz + fdiv %st, %st(0) + ret +END(__ieee754_acoshl) |