diff options
author | Joe Ramsay <Joe.Ramsay@arm.com> | 2023-11-03 12:12:20 +0000 |
---|---|---|
committer | Szabolcs Nagy <szabolcs.nagy@arm.com> | 2023-11-10 17:07:42 +0000 |
commit | b5d23367a8c1e92b26bd48cce984e790208cdac1 (patch) | |
tree | 7a4a1b8f54b302ea7285caf4cfbcf6a8b1ae993b /sysdeps/aarch64/fpu | |
parent | 9bed498418c163f7c6def447a38b09879e2b4612 (diff) | |
download | glibc-b5d23367a8c1e92b26bd48cce984e790208cdac1.tar glibc-b5d23367a8c1e92b26bd48cce984e790208cdac1.tar.gz glibc-b5d23367a8c1e92b26bd48cce984e790208cdac1.tar.bz2 glibc-b5d23367a8c1e92b26bd48cce984e790208cdac1.zip |
aarch64: Add vector implementations of acos routines
Diffstat (limited to 'sysdeps/aarch64/fpu')
-rw-r--r-- | sysdeps/aarch64/fpu/Makefile | 3 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/Versions | 4 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/acos_advsimd.c | 122 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/acos_sve.c | 93 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/acosf_advsimd.c | 113 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/acosf_sve.c | 86 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/bits/math-vector.h | 4 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-double-sve-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c | 1 | ||||
-rw-r--r-- | sysdeps/aarch64/fpu/test-float-sve-wrappers.c | 1 |
11 files changed, 428 insertions, 1 deletions
diff --git a/sysdeps/aarch64/fpu/Makefile b/sysdeps/aarch64/fpu/Makefile index d7c0bd2ed5..606fdd804f 100644 --- a/sysdeps/aarch64/fpu/Makefile +++ b/sysdeps/aarch64/fpu/Makefile @@ -1,4 +1,5 @@ -libmvec-supported-funcs = asin \ +libmvec-supported-funcs = acos \ + asin \ cos \ exp \ exp10 \ diff --git a/sysdeps/aarch64/fpu/Versions b/sysdeps/aarch64/fpu/Versions index 0f365a1e2e..1037cd92bd 100644 --- a/sysdeps/aarch64/fpu/Versions +++ b/sysdeps/aarch64/fpu/Versions @@ -18,6 +18,10 @@ libmvec { _ZGVsMxv_sinf; } GLIBC_2.39 { + _ZGVnN4v_acosf; + _ZGVnN2v_acos; + _ZGVsMxv_acosf; + _ZGVsMxv_acos; _ZGVnN4v_asinf; _ZGVnN2v_asin; _ZGVsMxv_asinf; diff --git a/sysdeps/aarch64/fpu/acos_advsimd.c b/sysdeps/aarch64/fpu/acos_advsimd.c new file mode 100644 index 0000000000..3121cf66b1 --- /dev/null +++ b/sysdeps/aarch64/fpu/acos_advsimd.c @@ -0,0 +1,122 @@ +/* Double-precision AdvSIMD inverse cos + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "v_math.h" +#include "poly_advsimd_f64.h" + +static const struct data +{ + float64x2_t poly[12]; + float64x2_t pi, pi_over_2; + uint64x2_t abs_mask; +} data = { + /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) + on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */ + .poly = { V2 (0x1.555555555554ep-3), V2 (0x1.3333333337233p-4), + V2 (0x1.6db6db67f6d9fp-5), V2 (0x1.f1c71fbd29fbbp-6), + V2 (0x1.6e8b264d467d6p-6), V2 (0x1.1c5997c357e9dp-6), + V2 (0x1.c86a22cd9389dp-7), V2 (0x1.856073c22ebbep-7), + V2 (0x1.fd1151acb6bedp-8), V2 (0x1.087182f799c1dp-6), + V2 (-0x1.6602748120927p-7), V2 (0x1.cfa0dd1f9478p-6), }, + .pi = V2 (0x1.921fb54442d18p+1), + .pi_over_2 = V2 (0x1.921fb54442d18p+0), + .abs_mask = V2 (0x7fffffffffffffff), +}; + +#define AllMask v_u64 (0xffffffffffffffff) +#define Oneu (0x3ff0000000000000) +#define Small (0x3e50000000000000) /* 2^-53. */ + +#if WANT_SIMD_EXCEPT +static float64x2_t VPCS_ATTR NOINLINE +special_case (float64x2_t x, float64x2_t y, uint64x2_t special) +{ + return v_call_f64 (acos, x, y, special); +} +#endif + +/* Double-precision implementation of vector acos(x). + + For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct + rounding. + If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following + approximation. + + For |x| in [Small, 0.5], use an order 11 polynomial P such that the final + approximation of asin is an odd polynomial: + + acos(x) ~ pi/2 - (x + x^3 P(x^2)). + + The largest observed error in this region is 1.18 ulps, + _ZGVnN2v_acos (0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0 + want 0x1.0d54d1985c069p+0. + + For |x| in [0.5, 1.0], use same approximation with a change of variable + + acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z). + + The largest observed error in this region is 1.52 ulps, + _ZGVnN2v_acos (0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1 + want 0x1.edbbedf8a7d6cp-1. */ +float64x2_t VPCS_ATTR V_NAME_D1 (acos) (float64x2_t x) +{ + const struct data *d = ptr_barrier (&data); + + float64x2_t ax = vabsq_f64 (x); + +#if WANT_SIMD_EXCEPT + /* A single comparison for One, Small and QNaN. */ + uint64x2_t special + = vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)), + v_u64 (Oneu - Small)); + if (__glibc_unlikely (v_any_u64 (special))) + return special_case (x, x, AllMask); +#endif + + uint64x2_t a_le_half = vcleq_f64 (ax, v_f64 (0.5)); + + /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with + z2 = x ^ 2 and z = |x| , if |x| < 0.5 + z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ + float64x2_t z2 = vbslq_f64 (a_le_half, vmulq_f64 (x, x), + vfmaq_f64 (v_f64 (0.5), v_f64 (-0.5), ax)); + float64x2_t z = vbslq_f64 (a_le_half, ax, vsqrtq_f64 (z2)); + + /* Use a single polynomial approximation P for both intervals. */ + float64x2_t z4 = vmulq_f64 (z2, z2); + float64x2_t z8 = vmulq_f64 (z4, z4); + float64x2_t z16 = vmulq_f64 (z8, z8); + float64x2_t p = v_estrin_11_f64 (z2, z4, z8, z16, d->poly); + + /* Finalize polynomial: z + z * z2 * P(z2). */ + p = vfmaq_f64 (z, vmulq_f64 (z, z2), p); + + /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 + = 2 Q(|x|) , for 0.5 < x < 1.0 + = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */ + float64x2_t y = vbslq_f64 (d->abs_mask, p, x); + + uint64x2_t is_neg = vcltzq_f64 (x); + float64x2_t off = vreinterpretq_f64_u64 ( + vandq_u64 (is_neg, vreinterpretq_u64_f64 (d->pi))); + float64x2_t mul = vbslq_f64 (a_le_half, v_f64 (-1.0), v_f64 (2.0)); + float64x2_t add = vbslq_f64 (a_le_half, d->pi_over_2, off); + + return vfmaq_f64 (add, mul, y); +} diff --git a/sysdeps/aarch64/fpu/acos_sve.c b/sysdeps/aarch64/fpu/acos_sve.c new file mode 100644 index 0000000000..1138a04e73 --- /dev/null +++ b/sysdeps/aarch64/fpu/acos_sve.c @@ -0,0 +1,93 @@ +/* Double-precision SVE inverse cos + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "sv_math.h" +#include "poly_sve_f64.h" + +static const struct data +{ + float64_t poly[12]; + float64_t pi, pi_over_2; +} data = { + /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) + on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */ + .poly = { 0x1.555555555554ep-3, 0x1.3333333337233p-4, 0x1.6db6db67f6d9fp-5, + 0x1.f1c71fbd29fbbp-6, 0x1.6e8b264d467d6p-6, 0x1.1c5997c357e9dp-6, + 0x1.c86a22cd9389dp-7, 0x1.856073c22ebbep-7, 0x1.fd1151acb6bedp-8, + 0x1.087182f799c1dp-6, -0x1.6602748120927p-7, 0x1.cfa0dd1f9478p-6, }, + .pi = 0x1.921fb54442d18p+1, + .pi_over_2 = 0x1.921fb54442d18p+0, +}; + +/* Double-precision SVE implementation of vector acos(x). + + For |x| in [0, 0.5], use an order 11 polynomial P such that the final + approximation of asin is an odd polynomial: + + acos(x) ~ pi/2 - (x + x^3 P(x^2)). + + The largest observed error in this region is 1.18 ulps, + _ZGVsMxv_acos (0x1.fbc5fe28ee9e3p-2) got 0x1.0d4d0f55667f6p+0 + want 0x1.0d4d0f55667f7p+0. + + For |x| in [0.5, 1.0], use same approximation with a change of variable + + acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z). + + The largest observed error in this region is 1.52 ulps, + _ZGVsMxv_acos (0x1.24024271a500ap-1) got 0x1.ed82df4243f0dp-1 + want 0x1.ed82df4243f0bp-1. */ +svfloat64_t SV_NAME_D1 (acos) (svfloat64_t x, const svbool_t pg) +{ + const struct data *d = ptr_barrier (&data); + + svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000); + svfloat64_t ax = svabs_x (pg, x); + + svbool_t a_gt_half = svacgt (pg, x, 0.5); + + /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with + z2 = x ^ 2 and z = |x| , if |x| < 0.5 + z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ + svfloat64_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5), + svmul_x (pg, x, x)); + svfloat64_t z = svsqrt_m (ax, a_gt_half, z2); + + /* Use a single polynomial approximation P for both intervals. */ + svfloat64_t z4 = svmul_x (pg, z2, z2); + svfloat64_t z8 = svmul_x (pg, z4, z4); + svfloat64_t z16 = svmul_x (pg, z8, z8); + svfloat64_t p = sv_estrin_11_f64_x (pg, z2, z4, z8, z16, d->poly); + + /* Finalize polynomial: z + z * z2 * P(z2). */ + p = svmla_x (pg, z, svmul_x (pg, z, z2), p); + + /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 + = 2 Q(|x|) , for 0.5 < x < 1.0 + = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */ + svfloat64_t y + = svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (p), sign)); + + svbool_t is_neg = svcmplt (pg, x, 0.0); + svfloat64_t off = svdup_f64_z (is_neg, d->pi); + svfloat64_t mul = svsel (a_gt_half, sv_f64 (2.0), sv_f64 (-1.0)); + svfloat64_t add = svsel (a_gt_half, off, sv_f64 (d->pi_over_2)); + + return svmla_x (pg, add, mul, y); +} diff --git a/sysdeps/aarch64/fpu/acosf_advsimd.c b/sysdeps/aarch64/fpu/acosf_advsimd.c new file mode 100644 index 0000000000..7d39e9b805 --- /dev/null +++ b/sysdeps/aarch64/fpu/acosf_advsimd.c @@ -0,0 +1,113 @@ +/* Single-precision AdvSIMD inverse cos + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "v_math.h" +#include "poly_advsimd_f32.h" + +static const struct data +{ + float32x4_t poly[5]; + float32x4_t pi_over_2f, pif; +} data = { + /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on + [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */ + .poly = { V4 (0x1.55555ep-3), V4 (0x1.33261ap-4), V4 (0x1.70d7dcp-5), + V4 (0x1.b059dp-6), V4 (0x1.3af7d8p-5) }, + .pi_over_2f = V4 (0x1.921fb6p+0f), + .pif = V4 (0x1.921fb6p+1f), +}; + +#define AbsMask 0x7fffffff +#define Half 0x3f000000 +#define One 0x3f800000 +#define Small 0x32800000 /* 2^-26. */ + +#if WANT_SIMD_EXCEPT +static float32x4_t VPCS_ATTR NOINLINE +special_case (float32x4_t x, float32x4_t y, uint32x4_t special) +{ + return v_call_f32 (acosf, x, y, special); +} +#endif + +/* Single-precision implementation of vector acos(x). + + For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-26 for correct + rounding. + If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following + approximation. + + For |x| in [Small, 0.5], use order 4 polynomial P such that the final + approximation of asin is an odd polynomial: + + acos(x) ~ pi/2 - (x + x^3 P(x^2)). + + The largest observed error in this region is 1.26 ulps, + _ZGVnN4v_acosf (0x1.843bfcp-2) got 0x1.2e934cp+0 want 0x1.2e934ap+0. + + For |x| in [0.5, 1.0], use same approximation with a change of variable + + acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z). + + The largest observed error in this region is 1.32 ulps, + _ZGVnN4v_acosf (0x1.15ba56p-1) got 0x1.feb33p-1 + want 0x1.feb32ep-1. */ +float32x4_t VPCS_ATTR V_NAME_F1 (acos) (float32x4_t x) +{ + const struct data *d = ptr_barrier (&data); + + uint32x4_t ix = vreinterpretq_u32_f32 (x); + uint32x4_t ia = vandq_u32 (ix, v_u32 (AbsMask)); + +#if WANT_SIMD_EXCEPT + /* A single comparison for One, Small and QNaN. */ + uint32x4_t special + = vcgtq_u32 (vsubq_u32 (ia, v_u32 (Small)), v_u32 (One - Small)); + if (__glibc_unlikely (v_any_u32 (special))) + return special_case (x, x, v_u32 (0xffffffff)); +#endif + + float32x4_t ax = vreinterpretq_f32_u32 (ia); + uint32x4_t a_le_half = vcleq_u32 (ia, v_u32 (Half)); + + /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with + z2 = x ^ 2 and z = |x| , if |x| < 0.5 + z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ + float32x4_t z2 = vbslq_f32 (a_le_half, vmulq_f32 (x, x), + vfmsq_n_f32 (v_f32 (0.5), ax, 0.5)); + float32x4_t z = vbslq_f32 (a_le_half, ax, vsqrtq_f32 (z2)); + + /* Use a single polynomial approximation P for both intervals. */ + float32x4_t p = v_horner_4_f32 (z2, d->poly); + /* Finalize polynomial: z + z * z2 * P(z2). */ + p = vfmaq_f32 (z, vmulq_f32 (z, z2), p); + + /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 + = 2 Q(|x|) , for 0.5 < x < 1.0 + = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */ + float32x4_t y = vbslq_f32 (v_u32 (AbsMask), p, x); + + uint32x4_t is_neg = vcltzq_f32 (x); + float32x4_t off = vreinterpretq_f32_u32 ( + vandq_u32 (vreinterpretq_u32_f32 (d->pif), is_neg)); + float32x4_t mul = vbslq_f32 (a_le_half, v_f32 (-1.0), v_f32 (2.0)); + float32x4_t add = vbslq_f32 (a_le_half, d->pi_over_2f, off); + + return vfmaq_f32 (add, mul, y); +} diff --git a/sysdeps/aarch64/fpu/acosf_sve.c b/sysdeps/aarch64/fpu/acosf_sve.c new file mode 100644 index 0000000000..44253fa999 --- /dev/null +++ b/sysdeps/aarch64/fpu/acosf_sve.c @@ -0,0 +1,86 @@ +/* Single-precision SVE inverse cos + + Copyright (C) 2023 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <https://www.gnu.org/licenses/>. */ + +#include "sv_math.h" +#include "poly_sve_f32.h" + +static const struct data +{ + float32_t poly[5]; + float32_t pi, pi_over_2; +} data = { + /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on + [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */ + .poly = { 0x1.55555ep-3, 0x1.33261ap-4, 0x1.70d7dcp-5, 0x1.b059dp-6, + 0x1.3af7d8p-5, }, + .pi = 0x1.921fb6p+1f, + .pi_over_2 = 0x1.921fb6p+0f, +}; + +/* Single-precision SVE implementation of vector acos(x). + + For |x| in [0, 0.5], use order 4 polynomial P such that the final + approximation of asin is an odd polynomial: + + acos(x) ~ pi/2 - (x + x^3 P(x^2)). + + The largest observed error in this region is 1.16 ulps, + _ZGVsMxv_acosf(0x1.ffbeccp-2) got 0x1.0c27f8p+0 + want 0x1.0c27f6p+0. + + For |x| in [0.5, 1.0], use same approximation with a change of variable + + acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z). + + The largest observed error in this region is 1.32 ulps, + _ZGVsMxv_acosf (0x1.15ba56p-1) got 0x1.feb33p-1 + want 0x1.feb32ep-1. */ +svfloat32_t SV_NAME_F1 (acos) (svfloat32_t x, const svbool_t pg) +{ + const struct data *d = ptr_barrier (&data); + + svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000); + svfloat32_t ax = svabs_x (pg, x); + svbool_t a_gt_half = svacgt (pg, x, 0.5); + + /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with + z2 = x ^ 2 and z = |x| , if |x| < 0.5 + z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ + svfloat32_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f32 (0.5), ax, 0.5), + svmul_x (pg, x, x)); + svfloat32_t z = svsqrt_m (ax, a_gt_half, z2); + + /* Use a single polynomial approximation P for both intervals. */ + svfloat32_t p = sv_horner_4_f32_x (pg, z2, d->poly); + /* Finalize polynomial: z + z * z2 * P(z2). */ + p = svmla_x (pg, z, svmul_x (pg, z, z2), p); + + /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 + = 2 Q(|x|) , for 0.5 < x < 1.0 + = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */ + svfloat32_t y + = svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (p), sign)); + + svbool_t is_neg = svcmplt (pg, x, 0.0); + svfloat32_t off = svdup_f32_z (is_neg, d->pi); + svfloat32_t mul = svsel (a_gt_half, sv_f32 (2.0), sv_f32 (-1.0)); + svfloat32_t add = svsel (a_gt_half, off, sv_f32 (d->pi_over_2)); + + return svmla_x (pg, add, mul, y); +} diff --git a/sysdeps/aarch64/fpu/bits/math-vector.h b/sysdeps/aarch64/fpu/bits/math-vector.h index 03778faf96..f313993d70 100644 --- a/sysdeps/aarch64/fpu/bits/math-vector.h +++ b/sysdeps/aarch64/fpu/bits/math-vector.h @@ -49,6 +49,7 @@ typedef __SVBool_t __sv_bool_t; # define __vpcs __attribute__ ((__aarch64_vector_pcs__)) +__vpcs __f32x4_t _ZGVnN4v_acosf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_asinf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_expf (__f32x4_t); @@ -60,6 +61,7 @@ __vpcs __f32x4_t _ZGVnN4v_log2f (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_sinf (__f32x4_t); __vpcs __f32x4_t _ZGVnN4v_tanf (__f32x4_t); +__vpcs __f64x2_t _ZGVnN2v_acos (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_asin (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t); __vpcs __f64x2_t _ZGVnN2v_exp (__f64x2_t); @@ -76,6 +78,7 @@ __vpcs __f64x2_t _ZGVnN2v_tan (__f64x2_t); #ifdef __SVE_VEC_MATH_SUPPORTED +__sv_f32_t _ZGVsMxv_acosf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_asinf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_expf (__sv_f32_t, __sv_bool_t); @@ -87,6 +90,7 @@ __sv_f32_t _ZGVsMxv_log2f (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_sinf (__sv_f32_t, __sv_bool_t); __sv_f32_t _ZGVsMxv_tanf (__sv_f32_t, __sv_bool_t); +__sv_f64_t _ZGVsMxv_acos (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_asin (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t); __sv_f64_t _ZGVsMxv_exp (__sv_f64_t, __sv_bool_t); diff --git a/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c b/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c index b5ccd6b1cc..5a0cbf743b 100644 --- a/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c +++ b/sysdeps/aarch64/fpu/test-double-advsimd-wrappers.c @@ -23,6 +23,7 @@ #define VEC_TYPE float64x2_t +VPCS_VECTOR_WRAPPER (acos_advsimd, _ZGVnN2v_acos) VPCS_VECTOR_WRAPPER (asin_advsimd, _ZGVnN2v_asin) VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos) VPCS_VECTOR_WRAPPER (exp_advsimd, _ZGVnN2v_exp) diff --git a/sysdeps/aarch64/fpu/test-double-sve-wrappers.c b/sysdeps/aarch64/fpu/test-double-sve-wrappers.c index fc3b20f421..bd89ff6133 100644 --- a/sysdeps/aarch64/fpu/test-double-sve-wrappers.c +++ b/sysdeps/aarch64/fpu/test-double-sve-wrappers.c @@ -32,6 +32,7 @@ return svlastb_f64 (svptrue_b64 (), mr); \ } +SVE_VECTOR_WRAPPER (acos_sve, _ZGVsMxv_acos) SVE_VECTOR_WRAPPER (asin_sve, _ZGVsMxv_asin) SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos) SVE_VECTOR_WRAPPER (exp_sve, _ZGVsMxv_exp) diff --git a/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c b/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c index 0a36aa91f5..3fafca7557 100644 --- a/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c +++ b/sysdeps/aarch64/fpu/test-float-advsimd-wrappers.c @@ -23,6 +23,7 @@ #define VEC_TYPE float32x4_t +VPCS_VECTOR_WRAPPER (acosf_advsimd, _ZGVnN4v_acosf) VPCS_VECTOR_WRAPPER (asinf_advsimd, _ZGVnN4v_asinf) VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf) VPCS_VECTOR_WRAPPER (expf_advsimd, _ZGVnN4v_expf) diff --git a/sysdeps/aarch64/fpu/test-float-sve-wrappers.c b/sysdeps/aarch64/fpu/test-float-sve-wrappers.c index f7e4882c7a..b4ec9f777b 100644 --- a/sysdeps/aarch64/fpu/test-float-sve-wrappers.c +++ b/sysdeps/aarch64/fpu/test-float-sve-wrappers.c @@ -32,6 +32,7 @@ return svlastb_f32 (svptrue_b32 (), mr); \ } +SVE_VECTOR_WRAPPER (acosf_sve, _ZGVsMxv_acosf) SVE_VECTOR_WRAPPER (asinf_sve, _ZGVsMxv_asinf) SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf) SVE_VECTOR_WRAPPER (expf_sve, _ZGVsMxv_expf) |