aboutsummaryrefslogtreecommitdiff
path: root/string
diff options
context:
space:
mode:
authorAdhemerval Zanella <adhemerval.zanella@linaro.org>2023-01-10 18:01:00 -0300
committerAdhemerval Zanella <adhemerval.zanella@linaro.org>2023-02-06 16:19:35 -0300
commit9d4fa7a1ca9154e814b7ede8d48186832bdbebe6 (patch)
tree6a8718e7273d67250e1ce97d20c93ef97ae1c4cb /string
parent0f4254311ebf15b8f3f6f66182e8dd5151a58a88 (diff)
downloadglibc-9d4fa7a1ca9154e814b7ede8d48186832bdbebe6.tar
glibc-9d4fa7a1ca9154e814b7ede8d48186832bdbebe6.tar.gz
glibc-9d4fa7a1ca9154e814b7ede8d48186832bdbebe6.tar.bz2
glibc-9d4fa7a1ca9154e814b7ede8d48186832bdbebe6.zip
string: Improve generic memrchr
New algorithm read the lastaligned address and mask off the unwanted bytes. The loop now read word-aligned address and check using the has_eq macro. Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu, and powerpc64-linux-gnu by removing the arch-specific assembly implementation and disabling multi-arch (it covers both LE and BE for 64 and 32 bits). Co-authored-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Noah Goldstein <goldstein.w.n@gmail.com>
Diffstat (limited to 'string')
-rw-r--r--string/memrchr.c196
1 files changed, 39 insertions, 157 deletions
diff --git a/string/memrchr.c b/string/memrchr.c
index 18b20ff76a..b37f2a68c8 100644
--- a/string/memrchr.c
+++ b/string/memrchr.c
@@ -1,11 +1,6 @@
/* memrchr -- find the last occurrence of a byte in a memory block
Copyright (C) 1991-2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
- Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
- with help from Dan Sahlin (dan@sics.se) and
- commentary by Jim Blandy (jimb@ai.mit.edu);
- adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
- and implemented by Roland McGrath (roland@ai.mit.edu).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
@@ -21,177 +16,64 @@
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
-#include <stdlib.h>
-
-#ifdef HAVE_CONFIG_H
-# include <config.h>
-#endif
-
-#if defined _LIBC
-# include <string.h>
-# include <memcopy.h>
-#endif
-
-#if defined HAVE_LIMITS_H || defined _LIBC
-# include <limits.h>
-#endif
-
-#define LONG_MAX_32_BITS 2147483647
-
-#ifndef LONG_MAX
-# define LONG_MAX LONG_MAX_32_BITS
-#endif
-
-#include <sys/types.h>
+#include <string-fzb.h>
+#include <string-fzc.h>
+#include <string-fzi.h>
+#include <string-shift.h>
+#include <string.h>
+#include <libc-pointer-arith.h>
#undef __memrchr
#undef memrchr
-#ifndef weak_alias
-# define __memrchr memrchr
+#ifdef MEMRCHR
+# define __memrchr MEMRCHR
#endif
-/* Search no more than N bytes of S for C. */
void *
-#ifndef MEMRCHR
-__memrchr
-#else
-MEMRCHR
-#endif
- (const void *s, int c_in, size_t n)
+__memrchr (const void *s, int c_in, size_t n)
{
- const unsigned char *char_ptr;
- const unsigned long int *longword_ptr;
- unsigned long int longword, magic_bits, charmask;
- unsigned char c;
-
- c = (unsigned char) c_in;
-
- /* Handle the last few characters by reading one character at a time.
- Do this until CHAR_PTR is aligned on a longword boundary. */
- for (char_ptr = (const unsigned char *) s + n;
- n > 0 && ((unsigned long int) char_ptr
- & (sizeof (longword) - 1)) != 0;
- --n)
- if (*--char_ptr == c)
- return (void *) char_ptr;
-
- /* All these elucidatory comments refer to 4-byte longwords,
- but the theory applies equally well to 8-byte longwords. */
-
- longword_ptr = (const unsigned long int *) char_ptr;
-
- /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
- the "holes." Note that there is a hole just to the left of
- each byte, with an extra at the end:
+ if (__glibc_unlikely (n == 0))
+ return NULL;
- bits: 01111110 11111110 11111110 11111111
- bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
+ const op_t *word_ptr = (const op_t *) PTR_ALIGN_UP (s + n, sizeof (op_t));
+ uintptr_t s_int = (uintptr_t) s + n;
- The 1-bits make sure that carries propagate to the next 0-bit.
- The 0-bits provide holes for carries to fall into. */
- magic_bits = -1;
- magic_bits = magic_bits / 0xff * 0xfe << 1 >> 1 | 1;
+ op_t word = *--word_ptr;
+ op_t repeated_c = repeat_bytes (c_in);
- /* Set up a longword, each of whose bytes is C. */
- charmask = c | (c << 8);
- charmask |= charmask << 16;
-#if LONG_MAX > LONG_MAX_32_BITS
- charmask |= charmask << 32;
-#endif
+ /* Compute the address of the word containing the initial byte. */
+ const op_t *sword = (const op_t *) PTR_ALIGN_DOWN (s, sizeof (op_t));
- /* Instead of the traditional loop which tests each character,
- we will test a longword at a time. The tricky part is testing
- if *any of the four* bytes in the longword in question are zero. */
- while (n >= sizeof (longword))
+ /* If the end of buffer is not op_t aligned, mask off the undesirable bits
+ before find the last byte position. */
+ find_t mask = shift_find_last (find_eq_all (word, repeated_c), s_int);
+ if (mask != 0)
{
- /* We tentatively exit the loop if adding MAGIC_BITS to
- LONGWORD fails to change any of the hole bits of LONGWORD.
-
- 1) Is this safe? Will it catch all the zero bytes?
- Suppose there is a byte with all zeros. Any carry bits
- propagating from its left will fall into the hole at its
- least significant bit and stop. Since there will be no
- carry from its most significant bit, the LSB of the
- byte to the left will be unchanged, and the zero will be
- detected.
-
- 2) Is this worthwhile? Will it ignore everything except
- zero bytes? Suppose every byte of LONGWORD has a bit set
- somewhere. There will be a carry into bit 8. If bit 8
- is set, this will carry into bit 16. If bit 8 is clear,
- one of bits 9-15 must be set, so there will be a carry
- into bit 16. Similarly, there will be a carry into bit
- 24. If one of bits 24-30 is set, there will be a carry
- into bit 31, so all of the hole bits will be changed.
-
- The one misfire occurs when bits 24-30 are clear and bit
- 31 is set; in this case, the hole at bit 31 is not
- changed. If we had access to the processor carry flag,
- we could close this loophole by putting the fourth hole
- at bit 32!
-
- So it ignores everything except 128's, when they're aligned
- properly.
-
- 3) But wait! Aren't we looking for C, not zero?
- Good point. So what we do is XOR LONGWORD with a longword,
- each of whose bytes is C. This turns each byte that is C
- into a zero. */
-
- longword = *--longword_ptr ^ charmask;
-
- /* Add MAGIC_BITS to LONGWORD. */
- if ((((longword + magic_bits)
-
- /* Set those bits that were unchanged by the addition. */
- ^ ~longword)
-
- /* Look at only the hole bits. If any of the hole bits
- are unchanged, most likely one of the bytes was a
- zero. */
- & ~magic_bits) != 0)
- {
- /* Which of the bytes was C? If none of them were, it was
- a misfire; continue the search. */
-
- const unsigned char *cp = (const unsigned char *) longword_ptr;
-
-#if LONG_MAX > 2147483647
- if (cp[7] == c)
- return (void *) &cp[7];
- if (cp[6] == c)
- return (void *) &cp[6];
- if (cp[5] == c)
- return (void *) &cp[5];
- if (cp[4] == c)
- return (void *) &cp[4];
-#endif
- if (cp[3] == c)
- return (void *) &cp[3];
- if (cp[2] == c)
- return (void *) &cp[2];
- if (cp[1] == c)
- return (void *) &cp[1];
- if (cp[0] == c)
- return (void *) cp;
- }
-
- n -= sizeof (longword);
+ char *ret = (char *) word_ptr + index_last (mask);
+ return ret >= (char *) s ? ret : NULL;
}
+ if (word_ptr == sword)
+ return NULL;
+ word = *--word_ptr;
- char_ptr = (const unsigned char *) longword_ptr;
-
- while (n-- > 0)
+ while (word_ptr != sword)
{
- if (*--char_ptr == c)
- return (void *) char_ptr;
+ if (has_eq (word, repeated_c))
+ return (char *) word_ptr + index_last_eq (word, repeated_c);
+ word = *--word_ptr;
}
- return 0;
+ if (has_eq (word, repeated_c))
+ {
+ /* We found a match, but it might be in a byte past the end of the
+ array. */
+ char *ret = (char *) word_ptr + index_last_eq (word, repeated_c);
+ if (ret >= (char *) s)
+ return ret;
+ }
+ return NULL;
}
#ifndef MEMRCHR
-# ifdef weak_alias
weak_alias (__memrchr, memrchr)
-# endif
#endif