diff options
author | Ulrich Drepper <drepper@redhat.com> | 2004-12-22 20:10:10 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 2004-12-22 20:10:10 +0000 |
commit | a334319f6530564d22e775935d9c91663623a1b4 (patch) | |
tree | b5877475619e4c938e98757d518bb1e9cbead751 /stdlib/mul_n.c | |
parent | 0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff) | |
download | glibc-a334319f6530564d22e775935d9c91663623a1b4.tar glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.bz2 glibc-a334319f6530564d22e775935d9c91663623a1b4.zip |
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'stdlib/mul_n.c')
-rw-r--r-- | stdlib/mul_n.c | 401 |
1 files changed, 0 insertions, 401 deletions
diff --git a/stdlib/mul_n.c b/stdlib/mul_n.c deleted file mode 100644 index b478c76aba..0000000000 --- a/stdlib/mul_n.c +++ /dev/null @@ -1,401 +0,0 @@ -/* mpn_mul_n -- Multiply two natural numbers of length n. - -Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc. - -This file is part of the GNU MP Library. - -The GNU MP Library is free software; you can redistribute it and/or modify -it under the terms of the GNU Lesser General Public License as published by -the Free Software Foundation; either version 2.1 of the License, or (at your -option) any later version. - -The GNU MP Library is distributed in the hope that it will be useful, but -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public -License for more details. - -You should have received a copy of the GNU Lesser General Public License -along with the GNU MP Library; see the file COPYING.LIB. If not, write to -the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, -MA 02111-1307, USA. */ - -#include <gmp.h> -#include "gmp-impl.h" - -/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), - both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are - always stored. Return the most significant limb. - - Argument constraints: - 1. PRODP != UP and PRODP != VP, i.e. the destination - must be distinct from the multiplier and the multiplicand. */ - -/* If KARATSUBA_THRESHOLD is not already defined, define it to a - value which is good on most machines. */ -#ifndef KARATSUBA_THRESHOLD -#define KARATSUBA_THRESHOLD 32 -#endif - -/* The code can't handle KARATSUBA_THRESHOLD smaller than 2. */ -#if KARATSUBA_THRESHOLD < 2 -#undef KARATSUBA_THRESHOLD -#define KARATSUBA_THRESHOLD 2 -#endif - -/* Handle simple cases with traditional multiplication. - - This is the most critical code of multiplication. All multiplies rely - on this, both small and huge. Small ones arrive here immediately. Huge - ones arrive here as this is the base case for Karatsuba's recursive - algorithm below. */ - -void -#if __STDC__ -impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) -#else -impn_mul_n_basecase (prodp, up, vp, size) - mp_ptr prodp; - mp_srcptr up; - mp_srcptr vp; - mp_size_t size; -#endif -{ - mp_size_t i; - mp_limb_t cy_limb; - mp_limb_t v_limb; - - /* Multiply by the first limb in V separately, as the result can be - stored (not added) to PROD. We also avoid a loop for zeroing. */ - v_limb = vp[0]; - if (v_limb <= 1) - { - if (v_limb == 1) - MPN_COPY (prodp, up, size); - else - MPN_ZERO (prodp, size); - cy_limb = 0; - } - else - cy_limb = mpn_mul_1 (prodp, up, size, v_limb); - - prodp[size] = cy_limb; - prodp++; - - /* For each iteration in the outer loop, multiply one limb from - U with one limb from V, and add it to PROD. */ - for (i = 1; i < size; i++) - { - v_limb = vp[i]; - if (v_limb <= 1) - { - cy_limb = 0; - if (v_limb == 1) - cy_limb = mpn_add_n (prodp, prodp, up, size); - } - else - cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); - - prodp[size] = cy_limb; - prodp++; - } -} - -void -#if __STDC__ -impn_mul_n (mp_ptr prodp, - mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace) -#else -impn_mul_n (prodp, up, vp, size, tspace) - mp_ptr prodp; - mp_srcptr up; - mp_srcptr vp; - mp_size_t size; - mp_ptr tspace; -#endif -{ - if ((size & 1) != 0) - { - /* The size is odd, the code code below doesn't handle that. - Multiply the least significant (size - 1) limbs with a recursive - call, and handle the most significant limb of S1 and S2 - separately. */ - /* A slightly faster way to do this would be to make the Karatsuba - code below behave as if the size were even, and let it check for - odd size in the end. I.e., in essence move this code to the end. - Doing so would save us a recursive call, and potentially make the - stack grow a lot less. */ - - mp_size_t esize = size - 1; /* even size */ - mp_limb_t cy_limb; - - MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace); - cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]); - prodp[esize + esize] = cy_limb; - cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]); - - prodp[esize + size] = cy_limb; - } - else - { - /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. - - Split U in two pieces, U1 and U0, such that - U = U0 + U1*(B**n), - and V in V1 and V0, such that - V = V0 + V1*(B**n). - - UV is then computed recursively using the identity - - 2n n n n - UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V - 1 1 1 0 0 1 0 0 - - Where B = 2**BITS_PER_MP_LIMB. */ - - mp_size_t hsize = size >> 1; - mp_limb_t cy; - int negflg; - - /*** Product H. ________________ ________________ - |_____U1 x V1____||____U0 x V0_____| */ - /* Put result in upper part of PROD and pass low part of TSPACE - as new TSPACE. */ - MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace); - - /*** Product M. ________________ - |_(U1-U0)(V0-V1)_| */ - if (mpn_cmp (up + hsize, up, hsize) >= 0) - { - mpn_sub_n (prodp, up + hsize, up, hsize); - negflg = 0; - } - else - { - mpn_sub_n (prodp, up, up + hsize, hsize); - negflg = 1; - } - if (mpn_cmp (vp + hsize, vp, hsize) >= 0) - { - mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize); - negflg ^= 1; - } - else - { - mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize); - /* No change of NEGFLG. */ - } - /* Read temporary operands from low part of PROD. - Put result in low part of TSPACE using upper part of TSPACE - as new TSPACE. */ - MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size); - - /*** Add/copy product H. */ - MPN_COPY (prodp + hsize, prodp + size, hsize); - cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); - - /*** Add product M (if NEGFLG M is a negative number). */ - if (negflg) - cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); - else - cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); - - /*** Product L. ________________ ________________ - |________________||____U0 x V0_____| */ - /* Read temporary operands from low part of PROD. - Put result in low part of TSPACE using upper part of TSPACE - as new TSPACE. */ - MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size); - - /*** Add/copy Product L (twice). */ - - cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); - if (cy) - mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); - - MPN_COPY (prodp, tspace, hsize); - cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); - if (cy) - mpn_add_1 (prodp + size, prodp + size, size, 1); - } -} - -void -#if __STDC__ -impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size) -#else -impn_sqr_n_basecase (prodp, up, size) - mp_ptr prodp; - mp_srcptr up; - mp_size_t size; -#endif -{ - mp_size_t i; - mp_limb_t cy_limb; - mp_limb_t v_limb; - - /* Multiply by the first limb in V separately, as the result can be - stored (not added) to PROD. We also avoid a loop for zeroing. */ - v_limb = up[0]; - if (v_limb <= 1) - { - if (v_limb == 1) - MPN_COPY (prodp, up, size); - else - MPN_ZERO (prodp, size); - cy_limb = 0; - } - else - cy_limb = mpn_mul_1 (prodp, up, size, v_limb); - - prodp[size] = cy_limb; - prodp++; - - /* For each iteration in the outer loop, multiply one limb from - U with one limb from V, and add it to PROD. */ - for (i = 1; i < size; i++) - { - v_limb = up[i]; - if (v_limb <= 1) - { - cy_limb = 0; - if (v_limb == 1) - cy_limb = mpn_add_n (prodp, prodp, up, size); - } - else - cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); - - prodp[size] = cy_limb; - prodp++; - } -} - -void -#if __STDC__ -impn_sqr_n (mp_ptr prodp, - mp_srcptr up, mp_size_t size, mp_ptr tspace) -#else -impn_sqr_n (prodp, up, size, tspace) - mp_ptr prodp; - mp_srcptr up; - mp_size_t size; - mp_ptr tspace; -#endif -{ - if ((size & 1) != 0) - { - /* The size is odd, the code code below doesn't handle that. - Multiply the least significant (size - 1) limbs with a recursive - call, and handle the most significant limb of S1 and S2 - separately. */ - /* A slightly faster way to do this would be to make the Karatsuba - code below behave as if the size were even, and let it check for - odd size in the end. I.e., in essence move this code to the end. - Doing so would save us a recursive call, and potentially make the - stack grow a lot less. */ - - mp_size_t esize = size - 1; /* even size */ - mp_limb_t cy_limb; - - MPN_SQR_N_RECURSE (prodp, up, esize, tspace); - cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]); - prodp[esize + esize] = cy_limb; - cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]); - - prodp[esize + size] = cy_limb; - } - else - { - mp_size_t hsize = size >> 1; - mp_limb_t cy; - - /*** Product H. ________________ ________________ - |_____U1 x U1____||____U0 x U0_____| */ - /* Put result in upper part of PROD and pass low part of TSPACE - as new TSPACE. */ - MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace); - - /*** Product M. ________________ - |_(U1-U0)(U0-U1)_| */ - if (mpn_cmp (up + hsize, up, hsize) >= 0) - { - mpn_sub_n (prodp, up + hsize, up, hsize); - } - else - { - mpn_sub_n (prodp, up, up + hsize, hsize); - } - - /* Read temporary operands from low part of PROD. - Put result in low part of TSPACE using upper part of TSPACE - as new TSPACE. */ - MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size); - - /*** Add/copy product H. */ - MPN_COPY (prodp + hsize, prodp + size, hsize); - cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); - - /*** Add product M (if NEGFLG M is a negative number). */ - cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); - - /*** Product L. ________________ ________________ - |________________||____U0 x U0_____| */ - /* Read temporary operands from low part of PROD. - Put result in low part of TSPACE using upper part of TSPACE - as new TSPACE. */ - MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); - - /*** Add/copy Product L (twice). */ - - cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); - if (cy) - mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); - - MPN_COPY (prodp, tspace, hsize); - cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); - if (cy) - mpn_add_1 (prodp + size, prodp + size, size, 1); - } -} - -/* This should be made into an inline function in gmp.h. */ -void -#if __STDC__ -mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) -#else -mpn_mul_n (prodp, up, vp, size) - mp_ptr prodp; - mp_srcptr up; - mp_srcptr vp; - mp_size_t size; -#endif -{ - TMP_DECL (marker); - TMP_MARK (marker); - if (up == vp) - { - if (size < KARATSUBA_THRESHOLD) - { - impn_sqr_n_basecase (prodp, up, size); - } - else - { - mp_ptr tspace; - tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); - impn_sqr_n (prodp, up, size, tspace); - } - } - else - { - if (size < KARATSUBA_THRESHOLD) - { - impn_mul_n_basecase (prodp, up, vp, size); - } - else - { - mp_ptr tspace; - tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); - impn_mul_n (prodp, up, vp, size, tspace); - } - } - TMP_FREE (marker); -} |