aboutsummaryrefslogtreecommitdiff
path: root/math
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-06-28 14:28:04 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-08-29 12:43:38 -0500
commitfeb62ddacb7b1d772d7383de0228a3977f07fc1e (patch)
tree963280635eb242a98f191744c196d55fadc2550f /math
parent1dbc54f61e281d3f2c1712dadd12864c42f8a64a (diff)
downloadglibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.gz
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.bz2
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.zip
Convert remaining complex function to generated files
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions into generated templates. Note, ldbl-opt still retains s_clog10l.c as the aliasing rules are non-trivial.
Diffstat (limited to 'math')
-rw-r--r--math/Makefile5
-rw-r--r--math/s_cexp.c157
-rw-r--r--math/s_cexp_template.c64
-rw-r--r--math/s_cexpf.c155
-rw-r--r--math/s_cexpl.c153
-rw-r--r--math/s_clog.c118
-rw-r--r--math/s_clog10.c124
-rw-r--r--math/s_clog10_template.c90
-rw-r--r--math/s_clog10f.c122
-rw-r--r--math/s_clog10l.c127
-rw-r--r--math/s_clog_template.c83
-rw-r--r--math/s_clogf.c116
-rw-r--r--math/s_clogl.c121
-rw-r--r--math/s_cpow.c33
-rw-r--r--math/s_cpow_template.c18
-rw-r--r--math/s_cpowf.c31
-rw-r--r--math/s_cpowl.c29
-rw-r--r--math/s_cproj.c44
-rw-r--r--math/s_cproj_template.c19
-rw-r--r--math/s_cprojf.c42
-rw-r--r--math/s_cprojl.c40
-rw-r--r--math/s_csqrt.c165
-rw-r--r--math/s_csqrt_template.c105
-rw-r--r--math/s_csqrtf.c163
-rw-r--r--math/s_csqrtl.c161
25 files changed, 194 insertions, 2091 deletions
diff --git a/math/Makefile b/math/Makefile
index dbc2a179dc..f1b7937c98 100644
--- a/math/Makefile
+++ b/math/Makefile
@@ -48,7 +48,8 @@ libm-support = s_lib_version s_matherr s_signgam \
gen-libm-calls = cargF conjF cimagF crealF cabsF s_cacosF \
s_cacoshF s_ccosF s_ccoshF s_casinF s_csinF s_casinhF \
k_casinhF s_csinhF k_casinhF s_csinhF s_catanhF s_catanF \
- s_ctanF s_ctanhF
+ s_ctanF s_ctanhF s_cexpF s_clogF s_cprojF s_csqrtF \
+ s_cpowF s_clog10F
libm-calls = \
e_acosF e_acoshF e_asinF e_atan2F e_atanhF e_coshF e_expF e_fmodF \
@@ -66,8 +67,6 @@ libm-calls = \
w_ilogbF \
s_fpclassifyF s_fmaxF s_fminF s_fdimF s_nanF s_truncF \
s_remquoF e_log2F e_exp2F s_roundF s_nearbyintF s_sincosF \
- s_cexpF s_clogF \
- s_csqrtF s_cpowF s_cprojF s_clog10F \
s_fmaF s_lrintF s_llrintF s_lroundF s_llroundF e_exp10F w_log2F \
s_issignalingF $(calls:s_%=m_%) x2y2m1F \
gamma_productF lgamma_negF lgamma_productF \
diff --git a/math/s_cexp.c b/math/s_cexp.c
deleted file mode 100644
index 3a476bde3c..0000000000
--- a/math/s_cexp.c
+++ /dev/null
@@ -1,157 +0,0 @@
-/* Return value of complex exponential function for double complex value.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <fenv.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ double
-__cexp (__complex__ double x)
-{
- __complex__ double retval;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_likely (rcls >= FP_ZERO))
- {
- /* Real part is finite. */
- if (__glibc_likely (icls >= FP_ZERO))
- {
- /* Imaginary part is finite. */
- const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
- double sinix, cosix;
-
- if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
- {
- __sincos (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0;
- }
-
- if (__real__ x > t)
- {
- double exp_t = __ieee754_exp (t);
- __real__ x -= t;
- sinix *= exp_t;
- cosix *= exp_t;
- if (__real__ x > t)
- {
- __real__ x -= t;
- sinix *= exp_t;
- cosix *= exp_t;
- }
- }
- if (__real__ x > t)
- {
- /* Overflow (original real part of x > 3t). */
- __real__ retval = DBL_MAX * cosix;
- __imag__ retval = DBL_MAX * sinix;
- }
- else
- {
- double exp_val = __ieee754_exp (__real__ x);
- __real__ retval = exp_val * cosix;
- __imag__ retval = exp_val * sinix;
- }
- math_check_force_underflow_complex (retval);
- }
- else
- {
- /* If the imaginary part is +-inf or NaN and the real part
- is not +-inf the result is NaN + iNaN. */
- __real__ retval = __nan ("");
- __imag__ retval = __nan ("");
-
- feraiseexcept (FE_INVALID);
- }
- }
- else if (__glibc_likely (rcls == FP_INFINITE))
- {
- /* Real part is infinite. */
- if (__glibc_likely (icls >= FP_ZERO))
- {
- /* Imaginary part is finite. */
- double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
-
- if (icls == FP_ZERO)
- {
- /* Imaginary part is 0.0. */
- __real__ retval = value;
- __imag__ retval = __imag__ x;
- }
- else
- {
- double sinix, cosix;
-
- if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
- {
- __sincos (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0;
- }
-
- __real__ retval = __copysign (value, cosix);
- __imag__ retval = __copysign (value, sinix);
- }
- }
- else if (signbit (__real__ x) == 0)
- {
- __real__ retval = HUGE_VAL;
- __imag__ retval = __nan ("");
-
- if (icls == FP_INFINITE)
- feraiseexcept (FE_INVALID);
- }
- else
- {
- __real__ retval = 0.0;
- __imag__ retval = __copysign (0.0, __imag__ x);
- }
- }
- else
- {
- /* If the real part is NaN the result is NaN + iNaN unless the
- imaginary part is zero. */
- __real__ retval = __nan ("");
- if (icls == FP_ZERO)
- __imag__ retval = __imag__ x;
- else
- {
- __imag__ retval = __nan ("");
-
- if (rcls != FP_NAN || icls != FP_NAN)
- feraiseexcept (FE_INVALID);
- }
- }
-
- return retval;
-}
-weak_alias (__cexp, cexp)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cexp, __cexpl)
-weak_alias (__cexp, cexpl)
-#endif
diff --git a/math/s_cexp_template.c b/math/s_cexp_template.c
index 3a476bde3c..a60afe0cac 100644
--- a/math/s_cexp_template.c
+++ b/math/s_cexp_template.c
@@ -1,4 +1,4 @@
-/* Return value of complex exponential function for double complex value.
+/* Return value of complex exponential function for a float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@@ -23,10 +23,10 @@
#include <math_private.h>
#include <float.h>
-__complex__ double
-__cexp (__complex__ double x)
+CFLOAT
+M_DECL_FUNC (__cexp) (CFLOAT x)
{
- __complex__ double retval;
+ CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@@ -36,22 +36,22 @@ __cexp (__complex__ double x)
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
- const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2);
- double sinix, cosix;
+ const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
+ FLOAT sinix, cosix;
- if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
+ if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
- __sincos (__imag__ x, &sinix, &cosix);
+ M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
- cosix = 1.0;
+ cosix = 1;
}
if (__real__ x > t)
{
- double exp_t = __ieee754_exp (t);
+ FLOAT exp_t = M_EXP (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
@@ -65,12 +65,12 @@ __cexp (__complex__ double x)
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
- __real__ retval = DBL_MAX * cosix;
- __imag__ retval = DBL_MAX * sinix;
+ __real__ retval = M_MAX * cosix;
+ __imag__ retval = M_MAX * sinix;
}
else
{
- double exp_val = __ieee754_exp (__real__ x);
+ FLOAT exp_val = M_EXP (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
@@ -80,8 +80,8 @@ __cexp (__complex__ double x)
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
- __real__ retval = __nan ("");
- __imag__ retval = __nan ("");
+ __real__ retval = M_NAN;
+ __imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
@@ -92,7 +92,7 @@ __cexp (__complex__ double x)
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
- double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
+ FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
if (icls == FP_ZERO)
{
@@ -102,46 +102,46 @@ __cexp (__complex__ double x)
}
else
{
- double sinix, cosix;
+ FLOAT sinix, cosix;
- if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
+ if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
- __sincos (__imag__ x, &sinix, &cosix);
+ M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
- cosix = 1.0;
+ cosix = 1;
}
- __real__ retval = __copysign (value, cosix);
- __imag__ retval = __copysign (value, sinix);
+ __real__ retval = M_COPYSIGN (value, cosix);
+ __imag__ retval = M_COPYSIGN (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
- __real__ retval = HUGE_VAL;
- __imag__ retval = __nan ("");
+ __real__ retval = M_HUGE_VAL;
+ __imag__ retval = M_NAN;
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
- __real__ retval = 0.0;
- __imag__ retval = __copysign (0.0, __imag__ x);
+ __real__ retval = 0;
+ __imag__ retval = M_COPYSIGN (0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
- __real__ retval = __nan ("");
+ __real__ retval = M_NAN;
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
- __imag__ retval = __nan ("");
+ __imag__ retval = M_NAN;
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
@@ -150,8 +150,8 @@ __cexp (__complex__ double x)
return retval;
}
-weak_alias (__cexp, cexp)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cexp, __cexpl)
-weak_alias (__cexp, cexpl)
+declare_mgen_alias (__cexp, cexp)
+
+#if M_LIBM_NEED_COMPAT (cexp)
+declare_mgen_libm_compat (__cexp, cexp)
#endif
diff --git a/math/s_cexpf.c b/math/s_cexpf.c
deleted file mode 100644
index 001fec2492..0000000000
--- a/math/s_cexpf.c
+++ /dev/null
@@ -1,155 +0,0 @@
-/* Return value of complex exponential function for float complex value.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <fenv.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ float
-__cexpf (__complex__ float x)
-{
- __complex__ float retval;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_likely (rcls >= FP_ZERO))
- {
- /* Real part is finite. */
- if (__glibc_likely (icls >= FP_ZERO))
- {
- /* Imaginary part is finite. */
- const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
- float sinix, cosix;
-
- if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
- {
- __sincosf (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0f;
- }
-
- if (__real__ x > t)
- {
- float exp_t = __ieee754_expf (t);
- __real__ x -= t;
- sinix *= exp_t;
- cosix *= exp_t;
- if (__real__ x > t)
- {
- __real__ x -= t;
- sinix *= exp_t;
- cosix *= exp_t;
- }
- }
- if (__real__ x > t)
- {
- /* Overflow (original real part of x > 3t). */
- __real__ retval = FLT_MAX * cosix;
- __imag__ retval = FLT_MAX * sinix;
- }
- else
- {
- float exp_val = __ieee754_expf (__real__ x);
- __real__ retval = exp_val * cosix;
- __imag__ retval = exp_val * sinix;
- }
- math_check_force_underflow_complex (retval);
- }
- else
- {
- /* If the imaginary part is +-inf or NaN and the real part
- is not +-inf the result is NaN + iNaN. */
- __real__ retval = __nanf ("");
- __imag__ retval = __nanf ("");
-
- feraiseexcept (FE_INVALID);
- }
- }
- else if (__glibc_likely (rcls == FP_INFINITE))
- {
- /* Real part is infinite. */
- if (__glibc_likely (icls >= FP_ZERO))
- {
- /* Imaginary part is finite. */
- float value = signbit (__real__ x) ? 0.0 : HUGE_VALF;
-
- if (icls == FP_ZERO)
- {
- /* Imaginary part is 0.0. */
- __real__ retval = value;
- __imag__ retval = __imag__ x;
- }
- else
- {
- float sinix, cosix;
-
- if (__glibc_likely (fabsf (__imag__ x) > FLT_MIN))
- {
- __sincosf (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0f;
- }
-
- __real__ retval = __copysignf (value, cosix);
- __imag__ retval = __copysignf (value, sinix);
- }
- }
- else if (signbit (__real__ x) == 0)
- {
- __real__ retval = HUGE_VALF;
- __imag__ retval = __nanf ("");
-
- if (icls == FP_INFINITE)
- feraiseexcept (FE_INVALID);
- }
- else
- {
- __real__ retval = 0.0;
- __imag__ retval = __copysignf (0.0, __imag__ x);
- }
- }
- else
- {
- /* If the real part is NaN the result is NaN + iNaN unless the
- imaginary part is zero. */
- __real__ retval = __nanf ("");
- if (icls == FP_ZERO)
- __imag__ retval = __imag__ x;
- else
- {
- __imag__ retval = __nanf ("");
-
- if (rcls != FP_NAN || icls != FP_NAN)
- feraiseexcept (FE_INVALID);
- }
- }
-
- return retval;
-}
-#ifndef __cexpf
-weak_alias (__cexpf, cexpf)
-#endif
diff --git a/math/s_cexpl.c b/math/s_cexpl.c
deleted file mode 100644
index 9ab566c0c1..0000000000
--- a/math/s_cexpl.c
+++ /dev/null
@@ -1,153 +0,0 @@
-/* Return value of complex exponential function for long double complex value.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <fenv.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ long double
-__cexpl (__complex__ long double x)
-{
- __complex__ long double retval;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_likely (rcls >= FP_ZERO))
- {
- /* Real part is finite. */
- if (__glibc_likely (icls >= FP_ZERO))
- {
- /* Imaginary part is finite. */
- const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
- long double sinix, cosix;
-
- if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
- {
- __sincosl (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0;
- }
-
- if (__real__ x > t)
- {
- long double exp_t = __ieee754_expl (t);
- __real__ x -= t;
- sinix *= exp_t;
- cosix *= exp_t;
- if (__real__ x > t)
- {
- __real__ x -= t;
- sinix *= exp_t;
- cosix *= exp_t;
- }
- }
- if (__real__ x > t)
- {
- /* Overflow (original real part of x > 3t). */
- __real__ retval = LDBL_MAX * cosix;
- __imag__ retval = LDBL_MAX * sinix;
- }
- else
- {
- long double exp_val = __ieee754_expl (__real__ x);
- __real__ retval = exp_val * cosix;
- __imag__ retval = exp_val * sinix;
- }
- math_check_force_underflow_complex (retval);
- }
- else
- {
- /* If the imaginary part is +-inf or NaN and the real part
- is not +-inf the result is NaN + iNaN. */
- __real__ retval = __nanl ("");
- __imag__ retval = __nanl ("");
-
- feraiseexcept (FE_INVALID);
- }
- }
- else if (__glibc_likely (rcls == FP_INFINITE))
- {
- /* Real part is infinite. */
- if (__glibc_likely (icls >= FP_ZERO))
- {
- /* Imaginary part is finite. */
- long double value = signbit (__real__ x) ? 0.0 : HUGE_VALL;
-
- if (icls == FP_ZERO)
- {
- /* Imaginary part is 0.0. */
- __real__ retval = value;
- __imag__ retval = __imag__ x;
- }
- else
- {
- long double sinix, cosix;
-
- if (__glibc_likely (fabsl (__imag__ x) > LDBL_MIN))
- {
- __sincosl (__imag__ x, &sinix, &cosix);
- }
- else
- {
- sinix = __imag__ x;
- cosix = 1.0;
- }
-
- __real__ retval = __copysignl (value, cosix);
- __imag__ retval = __copysignl (value, sinix);
- }
- }
- else if (signbit (__real__ x) == 0)
- {
- __real__ retval = HUGE_VALL;
- __imag__ retval = __nanl ("");
-
- if (icls == FP_INFINITE)
- feraiseexcept (FE_INVALID);
- }
- else
- {
- __real__ retval = 0.0;
- __imag__ retval = __copysignl (0.0, __imag__ x);
- }
- }
- else
- {
- /* If the real part is NaN the result is NaN + iNaN unless the
- imaginary part is zero. */
- __real__ retval = __nanl ("");
- if (icls == FP_ZERO)
- __imag__ retval = __imag__ x;
- else
- {
- __imag__ retval = __nanl ("");
-
- if (rcls != FP_NAN || icls != FP_NAN)
- feraiseexcept (FE_INVALID);
- }
- }
-
- return retval;
-}
-weak_alias (__cexpl, cexpl)
diff --git a/math/s_clog.c b/math/s_clog.c
deleted file mode 100644
index b546030313..0000000000
--- a/math/s_clog.c
+++ /dev/null
@@ -1,118 +0,0 @@
-/* Compute complex natural logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ double
-__clog (__complex__ double x)
-{
- __complex__ double result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI : 0.0;
- __imag__ result = __copysign (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabs (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- double absx = fabs (__real__ x), absy = fabs (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- double t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > DBL_MAX / 2.0)
- {
- scale = -1;
- absx = __scalbn (absx, scale);
- absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
- }
- else if (absx < DBL_MIN && absy < DBL_MIN)
- {
- scale = DBL_MANT_DIG;
- absx = __scalbn (absx, scale);
- absy = __scalbn (absy, scale);
- }
-
- if (absx == 1.0 && scale == 0)
- {
- __real__ result = __log1p (absy * absy) / 2.0;
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
- {
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- if (absy >= DBL_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1p (d2m1) / 2.0;
- }
- else if (absx < 1.0
- && absx >= 0.5
- && absy < DBL_EPSILON / 2.0
- && scale == 0)
- {
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- __real__ result = __log1p (d2m1) / 2.0;
- }
- else if (absx < 1.0
- && absx >= 0.5
- && scale == 0
- && absx * absx + absy * absy >= 0.5)
- {
- double d2m1 = __x2y2m1 (absx, absy);
- __real__ result = __log1p (d2m1) / 2.0;
- }
- else
- {
- double d = __ieee754_hypot (absx, absy);
- __real__ result = __ieee754_log (d) - scale * M_LN2;
- }
-
- __imag__ result = __ieee754_atan2 (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nan ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VAL;
- else
- __real__ result = __nan ("");
- }
-
- return result;
-}
-weak_alias (__clog, clog)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__clog, __clogl)
-weak_alias (__clog, clogl)
-#endif
diff --git a/math/s_clog10.c b/math/s_clog10.c
deleted file mode 100644
index 8d9245bac6..0000000000
--- a/math/s_clog10.c
+++ /dev/null
@@ -1,124 +0,0 @@
-/* Compute complex base 10 logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* log_10 (2). */
-#define M_LOG10_2 0.3010299956639811952137388947244930267682
-
-/* pi * log10 (e). */
-#define M_PI_LOG10E 1.364376353841841347485783625431355770210
-
-__complex__ double
-__clog10 (__complex__ double x)
-{
- __complex__ double result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI_LOG10E : 0.0;
- __imag__ result = __copysign (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabs (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- double absx = fabs (__real__ x), absy = fabs (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- double t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > DBL_MAX / 2.0)
- {
- scale = -1;
- absx = __scalbn (absx, scale);
- absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
- }
- else if (absx < DBL_MIN && absy < DBL_MIN)
- {
- scale = DBL_MANT_DIG;
- absx = __scalbn (absx, scale);
- absy = __scalbn (absy, scale);
- }
-
- if (absx == 1.0 && scale == 0)
- {
- __real__ result = __log1p (absy * absy) * (M_LOG10E / 2.0);
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
- {
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- if (absy >= DBL_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
- }
- else if (absx < 1.0
- && absx >= 0.5
- && absy < DBL_EPSILON / 2.0
- && scale == 0)
- {
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
- }
- else if (absx < 1.0
- && absx >= 0.5
- && scale == 0
- && absx * absx + absy * absy >= 0.5)
- {
- double d2m1 = __x2y2m1 (absx, absy);
- __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
- }
- else
- {
- double d = __ieee754_hypot (absx, absy);
- __real__ result = __ieee754_log10 (d) - scale * M_LOG10_2;
- }
-
- __imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nan ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VAL;
- else
- __real__ result = __nan ("");
- }
-
- return result;
-}
-weak_alias (__clog10, clog10)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__clog10, __clog10l)
-weak_alias (__clog10, clog10l)
-#endif
diff --git a/math/s_clog10_template.c b/math/s_clog10_template.c
index 8d9245bac6..82624e38be 100644
--- a/math/s_clog10_template.c
+++ b/math/s_clog10_template.c
@@ -23,102 +23,106 @@
#include <float.h>
/* log_10 (2). */
-#define M_LOG10_2 0.3010299956639811952137388947244930267682
+#define LOG10_2 M_LIT (0.3010299956639811952137388947244930267682)
/* pi * log10 (e). */
-#define M_PI_LOG10E 1.364376353841841347485783625431355770210
+#define PI_LOG10E M_LIT (1.364376353841841347485783625431355770210)
-__complex__ double
-__clog10 (__complex__ double x)
+CFLOAT
+M_DECL_FUNC (__clog10) (CFLOAT x)
{
- __complex__ double result;
+ CFLOAT result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI_LOG10E : 0.0;
- __imag__ result = __copysign (__imag__ result, __imag__ x);
+ __imag__ result = signbit (__real__ x) ? PI_LOG10E : 0;
+ __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabs (__real__ x);
+ __real__ result = -1 / M_FABS (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
- double absx = fabs (__real__ x), absy = fabs (__imag__ x);
+ FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x);
int scale = 0;
if (absx < absy)
{
- double t = absx;
+ FLOAT t = absx;
absx = absy;
absy = t;
}
- if (absx > DBL_MAX / 2.0)
+ if (absx > M_MAX / 2)
{
scale = -1;
- absx = __scalbn (absx, scale);
- absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
+ absx = M_SCALBN (absx, scale);
+ absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0);
}
- else if (absx < DBL_MIN && absy < DBL_MIN)
+ else if (absx < M_MIN && absy < M_MIN)
{
- scale = DBL_MANT_DIG;
- absx = __scalbn (absx, scale);
- absy = __scalbn (absy, scale);
+ scale = M_MANT_DIG;
+ absx = M_SCALBN (absx, scale);
+ absy = M_SCALBN (absy, scale);
}
- if (absx == 1.0 && scale == 0)
+ if (absx == 1 && scale == 0)
{
- __real__ result = __log1p (absy * absy) * (M_LOG10E / 2.0);
+ __real__ result = (M_LOG1P (absy * absy)
+ * ((FLOAT) M_MLIT (M_LOG10E) / 2));
math_check_force_underflow_nonneg (__real__ result);
}
- else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
+ else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
{
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- if (absy >= DBL_EPSILON)
+ FLOAT d2m1 = (absx - 1) * (absx + 1);
+ if (absy >= M_EPSILON)
d2m1 += absy * absy;
- __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
+ __real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2);
}
- else if (absx < 1.0
- && absx >= 0.5
- && absy < DBL_EPSILON / 2.0
+ else if (absx < 1
+ && absx >= M_LIT (0.5)
+ && absy < M_EPSILON / 2
&& scale == 0)
{
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
+ FLOAT d2m1 = (absx - 1) * (absx + 1);
+ __real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2);
}
- else if (absx < 1.0
- && absx >= 0.5
+ else if (absx < 1
+ && absx >= M_LIT (0.5)
&& scale == 0
- && absx * absx + absy * absy >= 0.5)
+ && absx * absx + absy * absy >= M_LIT (0.5))
{
- double d2m1 = __x2y2m1 (absx, absy);
- __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0);
+ FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy);
+ __real__ result = M_LOG1P (d2m1) * ((FLOAT) M_MLIT (M_LOG10E) / 2);
}
else
{
- double d = __ieee754_hypot (absx, absy);
- __real__ result = __ieee754_log10 (d) - scale * M_LOG10_2;
+ FLOAT d = M_HYPOT (absx, absy);
+ __real__ result = M_SUF (__ieee754_log10) (d) - scale * LOG10_2;
}
- __imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x);
+ __imag__ result = M_MLIT (M_LOG10E) * M_ATAN2 (__imag__ x, __real__ x);
}
else
{
- __imag__ result = __nan ("");
+ __imag__ result = M_NAN;
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
- __real__ result = HUGE_VAL;
+ __real__ result = M_HUGE_VAL;
else
- __real__ result = __nan ("");
+ __real__ result = M_NAN;
}
return result;
}
-weak_alias (__clog10, clog10)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__clog10, __clog10l)
-weak_alias (__clog10, clog10l)
+
+declare_mgen_alias (__clog10, clog10)
+
+#if M_LIBM_NEED_COMPAT (clog10)
+/* __clog10 is also a public symbol. */
+declare_mgen_libm_compat (__clog10, __clog10)
+declare_mgen_libm_compat (clog10, clog10)
#endif
diff --git a/math/s_clog10f.c b/math/s_clog10f.c
deleted file mode 100644
index 485625e2bb..0000000000
--- a/math/s_clog10f.c
+++ /dev/null
@@ -1,122 +0,0 @@
-/* Compute complex base 10 logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* log_10 (2). */
-#define M_LOG10_2f 0.3010299956639811952137388947244930267682f
-
-/* pi * log10 (e). */
-#define M_PI_LOG10Ef 1.364376353841841347485783625431355770210f
-
-__complex__ float
-__clog10f (__complex__ float x)
-{
- __complex__ float result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI_LOG10Ef : 0.0;
- __imag__ result = __copysignf (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabsf (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- float t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > FLT_MAX / 2.0f)
- {
- scale = -1;
- absx = __scalbnf (absx, scale);
- absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
- }
- else if (absx < FLT_MIN && absy < FLT_MIN)
- {
- scale = FLT_MANT_DIG;
- absx = __scalbnf (absx, scale);
- absy = __scalbnf (absy, scale);
- }
-
- if (absx == 1.0f && scale == 0)
- {
- __real__ result = __log1pf (absy * absy) * ((float) M_LOG10E / 2.0f);
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
- {
- float d2m1 = (absx - 1.0f) * (absx + 1.0f);
- if (absy >= FLT_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
- }
- else if (absx < 1.0f
- && absx >= 0.5f
- && absy < FLT_EPSILON / 2.0f
- && scale == 0)
- {
- float d2m1 = (absx - 1.0f) * (absx + 1.0f);
- __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
- }
- else if (absx < 1.0f
- && absx >= 0.5f
- && scale == 0
- && absx * absx + absy * absy >= 0.5f)
- {
- float d2m1 = __x2y2m1f (absx, absy);
- __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
- }
- else
- {
- float d = __ieee754_hypotf (absx, absy);
- __real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f;
- }
-
- __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nanf ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VALF;
- else
- __real__ result = __nanf ("");
- }
-
- return result;
-}
-#ifndef __clog10f
-weak_alias (__clog10f, clog10f)
-#endif
diff --git a/math/s_clog10l.c b/math/s_clog10l.c
deleted file mode 100644
index da40477a80..0000000000
--- a/math/s_clog10l.c
+++ /dev/null
@@ -1,127 +0,0 @@
-/* Compute complex base 10 logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* To avoid spurious underflows, use this definition to treat IBM long
- double as approximating an IEEE-style format. */
-#if LDBL_MANT_DIG == 106
-# undef LDBL_EPSILON
-# define LDBL_EPSILON 0x1p-106L
-#endif
-
-/* log_10 (2). */
-#define M_LOG10_2l 0.3010299956639811952137388947244930267682L
-
-/* pi * log10 (e). */
-#define M_PI_LOG10El 1.364376353841841347485783625431355770210L
-
-__complex__ long double
-__clog10l (__complex__ long double x)
-{
- __complex__ long double result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI_LOG10El : 0.0;
- __imag__ result = __copysignl (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabsl (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- long double t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > LDBL_MAX / 2.0L)
- {
- scale = -1;
- absx = __scalbnl (absx, scale);
- absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
- }
- else if (absx < LDBL_MIN && absy < LDBL_MIN)
- {
- scale = LDBL_MANT_DIG;
- absx = __scalbnl (absx, scale);
- absy = __scalbnl (absy, scale);
- }
-
- if (absx == 1.0L && scale == 0)
- {
- __real__ result = __log1pl (absy * absy) * (M_LOG10El / 2.0L);
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
- {
- long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
- if (absy >= LDBL_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
- }
- else if (absx < 1.0L
- && absx >= 0.5L
- && absy < LDBL_EPSILON / 2.0L
- && scale == 0)
- {
- long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
- __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
- }
- else if (absx < 1.0L
- && absx >= 0.5L
- && scale == 0
- && absx * absx + absy * absy >= 0.5L)
- {
- long double d2m1 = __x2y2m1l (absx, absy);
- __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L);
- }
- else
- {
- long double d = __ieee754_hypotl (absx, absy);
- __real__ result = __ieee754_log10l (d) - scale * M_LOG10_2l;
- }
-
- __imag__ result = M_LOG10El * __ieee754_atan2l (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nanl ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VALL;
- else
- __real__ result = __nanl ("");
- }
-
- return result;
-}
-weak_alias (__clog10l, clog10l)
diff --git a/math/s_clog_template.c b/math/s_clog_template.c
index b546030313..047ac03cd9 100644
--- a/math/s_clog_template.c
+++ b/math/s_clog_template.c
@@ -22,97 +22,98 @@
#include <math_private.h>
#include <float.h>
-__complex__ double
-__clog (__complex__ double x)
+CFLOAT
+M_DECL_FUNC (__clog) (CFLOAT x)
{
- __complex__ double result;
+ CFLOAT result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI : 0.0;
- __imag__ result = __copysign (__imag__ result, __imag__ x);
+ __imag__ result = signbit (__real__ x) ? (FLOAT) M_MLIT (M_PI) : 0;
+ __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabs (__real__ x);
+ __real__ result = -1 / M_FABS (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
- double absx = fabs (__real__ x), absy = fabs (__imag__ x);
+ FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x);
int scale = 0;
if (absx < absy)
{
- double t = absx;
+ FLOAT t = absx;
absx = absy;
absy = t;
}
- if (absx > DBL_MAX / 2.0)
+ if (absx > M_MAX / 2)
{
scale = -1;
- absx = __scalbn (absx, scale);
- absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0);
+ absx = M_SCALBN (absx, scale);
+ absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0);
}
- else if (absx < DBL_MIN && absy < DBL_MIN)
+ else if (absx < M_MIN && absy < M_MIN)
{
- scale = DBL_MANT_DIG;
- absx = __scalbn (absx, scale);
- absy = __scalbn (absy, scale);
+ scale = M_MANT_DIG;
+ absx = M_SCALBN (absx, scale);
+ absy = M_SCALBN (absy, scale);
}
- if (absx == 1.0 && scale == 0)
+ if (absx == 1 && scale == 0)
{
- __real__ result = __log1p (absy * absy) / 2.0;
+ __real__ result = M_LOG1P (absy * absy) / 2;
math_check_force_underflow_nonneg (__real__ result);
}
- else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0)
+ else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
{
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- if (absy >= DBL_EPSILON)
+ FLOAT d2m1 = (absx - 1) * (absx + 1);
+ if (absy >= M_EPSILON)
d2m1 += absy * absy;
- __real__ result = __log1p (d2m1) / 2.0;
+ __real__ result = M_LOG1P (d2m1) / 2;
}
- else if (absx < 1.0
- && absx >= 0.5
- && absy < DBL_EPSILON / 2.0
+ else if (absx < 1
+ && absx >= M_LIT (0.5)
+ && absy < M_EPSILON / 2
&& scale == 0)
{
- double d2m1 = (absx - 1.0) * (absx + 1.0);
- __real__ result = __log1p (d2m1) / 2.0;
+ FLOAT d2m1 = (absx - 1) * (absx + 1);
+ __real__ result = M_LOG1P (d2m1) / 2;
}
- else if (absx < 1.0
- && absx >= 0.5
+ else if (absx < 1
+ && absx >= M_LIT (0.5)
&& scale == 0
- && absx * absx + absy * absy >= 0.5)
+ && absx * absx + absy * absy >= M_LIT (0.5))
{
- double d2m1 = __x2y2m1 (absx, absy);
- __real__ result = __log1p (d2m1) / 2.0;
+ FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy);
+ __real__ result = M_LOG1P (d2m1) / 2;
}
else
{
- double d = __ieee754_hypot (absx, absy);
- __real__ result = __ieee754_log (d) - scale * M_LN2;
+ FLOAT d = M_HYPOT (absx, absy);
+ __real__ result = M_LOG (d) - scale * (FLOAT) M_MLIT (M_LN2);
}
- __imag__ result = __ieee754_atan2 (__imag__ x, __real__ x);
+ __imag__ result = M_ATAN2 (__imag__ x, __real__ x);
}
else
{
- __imag__ result = __nan ("");
+ __imag__ result = M_NAN;
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
- __real__ result = HUGE_VAL;
+ __real__ result = M_HUGE_VAL;
else
- __real__ result = __nan ("");
+ __real__ result = M_NAN;
}
return result;
}
-weak_alias (__clog, clog)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__clog, __clogl)
-weak_alias (__clog, clogl)
+
+declare_mgen_alias (__clog, clog)
+
+#if M_LIBM_NEED_COMPAT (clog)
+declare_mgen_libm_compat (__clog, clog)
#endif
diff --git a/math/s_clogf.c b/math/s_clogf.c
deleted file mode 100644
index cc565398e6..0000000000
--- a/math/s_clogf.c
+++ /dev/null
@@ -1,116 +0,0 @@
-/* Compute complex natural logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ float
-__clogf (__complex__ float x)
-{
- __complex__ float result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PI : 0.0;
- __imag__ result = __copysignf (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabsf (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- float t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > FLT_MAX / 2.0f)
- {
- scale = -1;
- absx = __scalbnf (absx, scale);
- absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
- }
- else if (absx < FLT_MIN && absy < FLT_MIN)
- {
- scale = FLT_MANT_DIG;
- absx = __scalbnf (absx, scale);
- absy = __scalbnf (absy, scale);
- }
-
- if (absx == 1.0f && scale == 0)
- {
- __real__ result = __log1pf (absy * absy) / 2.0f;
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
- {
- float d2m1 = (absx - 1.0f) * (absx + 1.0f);
- if (absy >= FLT_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1pf (d2m1) / 2.0f;
- }
- else if (absx < 1.0f
- && absx >= 0.5f
- && absy < FLT_EPSILON / 2.0f
- && scale == 0)
- {
- float d2m1 = (absx - 1.0f) * (absx + 1.0f);
- __real__ result = __log1pf (d2m1) / 2.0f;
- }
- else if (absx < 1.0f
- && absx >= 0.5f
- && scale == 0
- && absx * absx + absy * absy >= 0.5f)
- {
- float d2m1 = __x2y2m1f (absx, absy);
- __real__ result = __log1pf (d2m1) / 2.0f;
- }
- else
- {
- float d = __ieee754_hypotf (absx, absy);
- __real__ result = __ieee754_logf (d) - scale * (float) M_LN2;
- }
-
- __imag__ result = __ieee754_atan2f (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nanf ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VALF;
- else
- __real__ result = __nanf ("");
- }
-
- return result;
-}
-#ifndef __clogf
-weak_alias (__clogf, clogf)
-#endif
diff --git a/math/s_clogl.c b/math/s_clogl.c
deleted file mode 100644
index 6db59b722f..0000000000
--- a/math/s_clogl.c
+++ /dev/null
@@ -1,121 +0,0 @@
-/* Compute complex natural logarithm.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-/* To avoid spurious underflows, use this definition to treat IBM long
- double as approximating an IEEE-style format. */
-#if LDBL_MANT_DIG == 106
-# undef LDBL_EPSILON
-# define LDBL_EPSILON 0x1p-106L
-#endif
-
-__complex__ long double
-__clogl (__complex__ long double x)
-{
- __complex__ long double result;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
- {
- /* Real and imaginary part are 0.0. */
- __imag__ result = signbit (__real__ x) ? M_PIl : 0.0;
- __imag__ result = __copysignl (__imag__ result, __imag__ x);
- /* Yes, the following line raises an exception. */
- __real__ result = -1.0 / fabsl (__real__ x);
- }
- else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
- {
- /* Neither real nor imaginary part is NaN. */
- long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
- int scale = 0;
-
- if (absx < absy)
- {
- long double t = absx;
- absx = absy;
- absy = t;
- }
-
- if (absx > LDBL_MAX / 2.0L)
- {
- scale = -1;
- absx = __scalbnl (absx, scale);
- absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
- }
- else if (absx < LDBL_MIN && absy < LDBL_MIN)
- {
- scale = LDBL_MANT_DIG;
- absx = __scalbnl (absx, scale);
- absy = __scalbnl (absy, scale);
- }
-
- if (absx == 1.0L && scale == 0)
- {
- __real__ result = __log1pl (absy * absy) / 2.0L;
- math_check_force_underflow_nonneg (__real__ result);
- }
- else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
- {
- long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
- if (absy >= LDBL_EPSILON)
- d2m1 += absy * absy;
- __real__ result = __log1pl (d2m1) / 2.0L;
- }
- else if (absx < 1.0L
- && absx >= 0.5L
- && absy < LDBL_EPSILON / 2.0L
- && scale == 0)
- {
- long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
- __real__ result = __log1pl (d2m1) / 2.0L;
- }
- else if (absx < 1.0L
- && absx >= 0.5L
- && scale == 0
- && absx * absx + absy * absy >= 0.5L)
- {
- long double d2m1 = __x2y2m1l (absx, absy);
- __real__ result = __log1pl (d2m1) / 2.0L;
- }
- else
- {
- long double d = __ieee754_hypotl (absx, absy);
- __real__ result = __ieee754_logl (d) - scale * M_LN2l;
- }
-
- __imag__ result = __ieee754_atan2l (__imag__ x, __real__ x);
- }
- else
- {
- __imag__ result = __nanl ("");
- if (rcls == FP_INFINITE || icls == FP_INFINITE)
- /* Real or imaginary part is infinite. */
- __real__ result = HUGE_VALL;
- else
- __real__ result = __nanl ("");
- }
-
- return result;
-}
-weak_alias (__clogl, clogl)
diff --git a/math/s_cpow.c b/math/s_cpow.c
deleted file mode 100644
index 037e575b1a..0000000000
--- a/math/s_cpow.c
+++ /dev/null
@@ -1,33 +0,0 @@
-/* Complex power of double values.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-
-
-__complex__ double
-__cpow (__complex__ double x, __complex__ double c)
-{
- return __cexp (c * __clog (x));
-}
-weak_alias (__cpow, cpow)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cpow, __cpowl)
-weak_alias (__cpow, cpowl)
-#endif
diff --git a/math/s_cpow_template.c b/math/s_cpow_template.c
index 037e575b1a..12dfc92c23 100644
--- a/math/s_cpow_template.c
+++ b/math/s_cpow_template.c
@@ -1,4 +1,4 @@
-/* Complex power of double values.
+/* Complex power of float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@@ -20,14 +20,14 @@
#include <complex.h>
#include <math.h>
-
-__complex__ double
-__cpow (__complex__ double x, __complex__ double c)
+CFLOAT
+M_DECL_FUNC (__cpow) (CFLOAT x, CFLOAT c)
{
- return __cexp (c * __clog (x));
+ return M_SUF (__cexp) (c * M_SUF (__clog) (x));
}
-weak_alias (__cpow, cpow)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cpow, __cpowl)
-weak_alias (__cpow, cpowl)
+
+declare_mgen_alias (__cpow, cpow)
+
+#if M_LIBM_NEED_COMPAT (cpow)
+declare_mgen_libm_compat (__cpow, cpow)
#endif
diff --git a/math/s_cpowf.c b/math/s_cpowf.c
deleted file mode 100644
index 2b0b5b26c5..0000000000
--- a/math/s_cpowf.c
+++ /dev/null
@@ -1,31 +0,0 @@
-/* Complex power of float values.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-
-
-__complex__ float
-__cpowf (__complex__ float x, __complex__ float c)
-{
- return __cexpf (c * __clogf (x));
-}
-#ifndef __cpowf
-weak_alias (__cpowf, cpowf)
-#endif
diff --git a/math/s_cpowl.c b/math/s_cpowl.c
deleted file mode 100644
index 963e03a45c..0000000000
--- a/math/s_cpowl.c
+++ /dev/null
@@ -1,29 +0,0 @@
-/* Complex power of long double values.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-
-
-__complex__ long double
-__cpowl (__complex__ long double x, __complex__ long double c)
-{
- return __cexpl (c * __clogl (x));
-}
-weak_alias (__cpowl, cpowl)
diff --git a/math/s_cproj.c b/math/s_cproj.c
deleted file mode 100644
index d47f009502..0000000000
--- a/math/s_cproj.c
+++ /dev/null
@@ -1,44 +0,0 @@
-/* Compute projection of complex double value to Riemann sphere.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-
-
-__complex__ double
-__cproj (__complex__ double x)
-{
- if (isinf (__real__ x) || isinf (__imag__ x))
- {
- __complex__ double res;
-
- __real__ res = INFINITY;
- __imag__ res = __copysign (0.0, __imag__ x);
-
- return res;
- }
-
- return x;
-}
-weak_alias (__cproj, cproj)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cproj, __cprojl)
-weak_alias (__cproj, cprojl)
-#endif
diff --git a/math/s_cproj_template.c b/math/s_cproj_template.c
index d47f009502..e274e4cef5 100644
--- a/math/s_cproj_template.c
+++ b/math/s_cproj_template.c
@@ -1,4 +1,4 @@
-/* Compute projection of complex double value to Riemann sphere.
+/* Compute projection of complex float type value to Riemann sphere.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
@@ -22,23 +22,24 @@
#include <math_private.h>
-__complex__ double
-__cproj (__complex__ double x)
+CFLOAT
+M_DECL_FUNC (__cproj) (CFLOAT x)
{
if (isinf (__real__ x) || isinf (__imag__ x))
{
- __complex__ double res;
+ CFLOAT res;
__real__ res = INFINITY;
- __imag__ res = __copysign (0.0, __imag__ x);
+ __imag__ res = M_COPYSIGN (0, __imag__ x);
return res;
}
return x;
}
-weak_alias (__cproj, cproj)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__cproj, __cprojl)
-weak_alias (__cproj, cprojl)
+
+declare_mgen_alias (__cproj, cproj)
+
+#if M_LIBM_NEED_COMPAT (cproj)
+declare_mgen_libm_compat (__cproj, cproj)
#endif
diff --git a/math/s_cprojf.c b/math/s_cprojf.c
deleted file mode 100644
index 8a0d873fdc..0000000000
--- a/math/s_cprojf.c
+++ /dev/null
@@ -1,42 +0,0 @@
-/* Compute projection of complex float value to Riemann sphere.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-
-
-__complex__ float
-__cprojf (__complex__ float x)
-{
- if (isinf (__real__ x) || isinf (__imag__ x))
- {
- __complex__ float res;
-
- __real__ res = INFINITY;
- __imag__ res = __copysignf (0.0, __imag__ x);
-
- return res;
- }
-
- return x;
-}
-#ifndef __cprojf
-weak_alias (__cprojf, cprojf)
-#endif
diff --git a/math/s_cprojl.c b/math/s_cprojl.c
deleted file mode 100644
index 213b73331a..0000000000
--- a/math/s_cprojl.c
+++ /dev/null
@@ -1,40 +0,0 @@
-/* Compute projection of complex long double value to Riemann sphere.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-
-
-__complex__ long double
-__cprojl (__complex__ long double x)
-{
- if (isinf (__real__ x) || isinf (__imag__ x))
- {
- __complex__ long double res;
-
- __real__ res = INFINITY;
- __imag__ res = __copysignl (0.0, __imag__ x);
-
- return res;
- }
-
- return x;
-}
-weak_alias (__cprojl, cprojl)
diff --git a/math/s_csqrt.c b/math/s_csqrt.c
deleted file mode 100644
index 1f073e7f17..0000000000
--- a/math/s_csqrt.c
+++ /dev/null
@@ -1,165 +0,0 @@
-/* Complex square root of double value.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ double
-__csqrt (__complex__ double x)
-{
- __complex__ double res;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
- {
- if (icls == FP_INFINITE)
- {
- __real__ res = HUGE_VAL;
- __imag__ res = __imag__ x;
- }
- else if (rcls == FP_INFINITE)
- {
- if (__real__ x < 0.0)
- {
- __real__ res = icls == FP_NAN ? __nan ("") : 0;
- __imag__ res = __copysign (HUGE_VAL, __imag__ x);
- }
- else
- {
- __real__ res = __real__ x;
- __imag__ res = (icls == FP_NAN
- ? __nan ("") : __copysign (0.0, __imag__ x));
- }
- }
- else
- {
- __real__ res = __nan ("");
- __imag__ res = __nan ("");
- }
- }
- else
- {
- if (__glibc_unlikely (icls == FP_ZERO))
- {
- if (__real__ x < 0.0)
- {
- __real__ res = 0.0;
- __imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
- __imag__ x);
- }
- else
- {
- __real__ res = fabs (__ieee754_sqrt (__real__ x));
- __imag__ res = __copysign (0.0, __imag__ x);
- }
- }
- else if (__glibc_unlikely (rcls == FP_ZERO))
- {
- double r;
- if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
- r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
- else
- r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
-
- __real__ res = r;
- __imag__ res = __copysign (r, __imag__ x);
- }
- else
- {
- double d, r, s;
- int scale = 0;
-
- if (fabs (__real__ x) > DBL_MAX / 4.0)
- {
- scale = 1;
- __real__ x = __scalbn (__real__ x, -2 * scale);
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
- }
- else if (fabs (__imag__ x) > DBL_MAX / 4.0)
- {
- scale = 1;
- if (fabs (__real__ x) >= 4.0 * DBL_MIN)
- __real__ x = __scalbn (__real__ x, -2 * scale);
- else
- __real__ x = 0.0;
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
- }
- else if (fabs (__real__ x) < 2.0 * DBL_MIN
- && fabs (__imag__ x) < 2.0 * DBL_MIN)
- {
- scale = -((DBL_MANT_DIG + 1) / 2);
- __real__ x = __scalbn (__real__ x, -2 * scale);
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
- }
-
- d = __ieee754_hypot (__real__ x, __imag__ x);
- /* Use the identity 2 Re res Im res = Im x
- to avoid cancellation error in d +/- Re x. */
- if (__real__ x > 0)
- {
- r = __ieee754_sqrt (0.5 * (d + __real__ x));
- if (scale == 1 && fabs (__imag__ x) < 1.0)
- {
- /* Avoid possible intermediate underflow. */
- s = __imag__ x / r;
- r = __scalbn (r, scale);
- scale = 0;
- }
- else
- s = 0.5 * (__imag__ x / r);
- }
- else
- {
- s = __ieee754_sqrt (0.5 * (d - __real__ x));
- if (scale == 1 && fabs (__imag__ x) < 1.0)
- {
- /* Avoid possible intermediate underflow. */
- r = fabs (__imag__ x / s);
- s = __scalbn (s, scale);
- scale = 0;
- }
- else
- r = fabs (0.5 * (__imag__ x / s));
- }
-
- if (scale)
- {
- r = __scalbn (r, scale);
- s = __scalbn (s, scale);
- }
-
- math_check_force_underflow (r);
- math_check_force_underflow (s);
-
- __real__ res = r;
- __imag__ res = __copysign (s, __imag__ x);
- }
- }
-
- return res;
-}
-weak_alias (__csqrt, csqrt)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__csqrt, __csqrtl)
-weak_alias (__csqrt, csqrtl)
-#endif
diff --git a/math/s_csqrt_template.c b/math/s_csqrt_template.c
index 1f073e7f17..22af083af7 100644
--- a/math/s_csqrt_template.c
+++ b/math/s_csqrt_template.c
@@ -1,4 +1,4 @@
-/* Complex square root of double value.
+/* Complex square root of a float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
@@ -23,10 +23,10 @@
#include <math_private.h>
#include <float.h>
-__complex__ double
-__csqrt (__complex__ double x)
+CFLOAT
+M_DECL_FUNC (__csqrt) (CFLOAT x)
{
- __complex__ double res;
+ CFLOAT res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@@ -34,132 +34,131 @@ __csqrt (__complex__ double x)
{
if (icls == FP_INFINITE)
{
- __real__ res = HUGE_VAL;
+ __real__ res = M_HUGE_VAL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
- if (__real__ x < 0.0)
+ if (__real__ x < 0)
{
- __real__ res = icls == FP_NAN ? __nan ("") : 0;
- __imag__ res = __copysign (HUGE_VAL, __imag__ x);
+ __real__ res = icls == FP_NAN ? M_NAN : 0;
+ __imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
- ? __nan ("") : __copysign (0.0, __imag__ x));
+ ? M_NAN : M_COPYSIGN (0, __imag__ x));
}
}
else
{
- __real__ res = __nan ("");
- __imag__ res = __nan ("");
+ __real__ res = M_NAN;
+ __imag__ res = M_NAN;
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
- if (__real__ x < 0.0)
+ if (__real__ x < 0)
{
- __real__ res = 0.0;
- __imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
- __imag__ x);
+ __real__ res = 0;
+ __imag__ res = M_COPYSIGN (M_SQRT (-__real__ x), __imag__ x);
}
else
{
- __real__ res = fabs (__ieee754_sqrt (__real__ x));
- __imag__ res = __copysign (0.0, __imag__ x);
+ __real__ res = M_FABS (M_SQRT (__real__ x));
+ __imag__ res = M_COPYSIGN (0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
- double r;
- if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
- r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
+ FLOAT r;
+ if (M_FABS (__imag__ x) >= 2 * M_MIN)
+ r = M_SQRT (M_LIT (0.5) * M_FABS (__imag__ x));
else
- r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
+ r = M_LIT (0.5) * M_SQRT (2 * M_FABS (__imag__ x));
__real__ res = r;
- __imag__ res = __copysign (r, __imag__ x);
+ __imag__ res = M_COPYSIGN (r, __imag__ x);
}
else
{
- double d, r, s;
+ FLOAT d, r, s;
int scale = 0;
- if (fabs (__real__ x) > DBL_MAX / 4.0)
+ if (M_FABS (__real__ x) > M_MAX / 4)
{
scale = 1;
- __real__ x = __scalbn (__real__ x, -2 * scale);
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
+ __real__ x = M_SCALBN (__real__ x, -2 * scale);
+ __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
- else if (fabs (__imag__ x) > DBL_MAX / 4.0)
+ else if (M_FABS (__imag__ x) > M_MAX / 4)
{
scale = 1;
- if (fabs (__real__ x) >= 4.0 * DBL_MIN)
- __real__ x = __scalbn (__real__ x, -2 * scale);
+ if (M_FABS (__real__ x) >= 4 * M_MIN)
+ __real__ x = M_SCALBN (__real__ x, -2 * scale);
else
- __real__ x = 0.0;
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
+ __real__ x = 0;
+ __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
- else if (fabs (__real__ x) < 2.0 * DBL_MIN
- && fabs (__imag__ x) < 2.0 * DBL_MIN)
+ else if (M_FABS (__real__ x) < 2 * M_MIN
+ && M_FABS (__imag__ x) < 2 * M_MIN)
{
- scale = -((DBL_MANT_DIG + 1) / 2);
- __real__ x = __scalbn (__real__ x, -2 * scale);
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
+ scale = -((M_MANT_DIG + 1) / 2);
+ __real__ x = M_SCALBN (__real__ x, -2 * scale);
+ __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
- d = __ieee754_hypot (__real__ x, __imag__ x);
+ d = M_HYPOT (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
- r = __ieee754_sqrt (0.5 * (d + __real__ x));
- if (scale == 1 && fabs (__imag__ x) < 1.0)
+ r = M_SQRT (M_LIT (0.5) * (d + __real__ x));
+ if (scale == 1 && M_FABS (__imag__ x) < 1)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
- r = __scalbn (r, scale);
+ r = M_SCALBN (r, scale);
scale = 0;
}
else
- s = 0.5 * (__imag__ x / r);
+ s = M_LIT (0.5) * (__imag__ x / r);
}
else
{
- s = __ieee754_sqrt (0.5 * (d - __real__ x));
- if (scale == 1 && fabs (__imag__ x) < 1.0)
+ s = M_SQRT (M_LIT (0.5) * (d - __real__ x));
+ if (scale == 1 && M_FABS (__imag__ x) < 1)
{
/* Avoid possible intermediate underflow. */
- r = fabs (__imag__ x / s);
- s = __scalbn (s, scale);
+ r = M_FABS (__imag__ x / s);
+ s = M_SCALBN (s, scale);
scale = 0;
}
else
- r = fabs (0.5 * (__imag__ x / s));
+ r = M_FABS (M_LIT (0.5) * (__imag__ x / s));
}
if (scale)
{
- r = __scalbn (r, scale);
- s = __scalbn (s, scale);
+ r = M_SCALBN (r, scale);
+ s = M_SCALBN (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
- __imag__ res = __copysign (s, __imag__ x);
+ __imag__ res = M_COPYSIGN (s, __imag__ x);
}
}
return res;
}
-weak_alias (__csqrt, csqrt)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__csqrt, __csqrtl)
-weak_alias (__csqrt, csqrtl)
+declare_mgen_alias (__csqrt, csqrt)
+
+#if M_LIBM_NEED_COMPAT (csqrt)
+declare_mgen_libm_compat (__csqrt, csqrt)
#endif
diff --git a/math/s_csqrtf.c b/math/s_csqrtf.c
deleted file mode 100644
index b30af06e08..0000000000
--- a/math/s_csqrtf.c
+++ /dev/null
@@ -1,163 +0,0 @@
-/* Complex square root of float value.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ float
-__csqrtf (__complex__ float x)
-{
- __complex__ float res;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
- {
- if (icls == FP_INFINITE)
- {
- __real__ res = HUGE_VALF;
- __imag__ res = __imag__ x;
- }
- else if (rcls == FP_INFINITE)
- {
- if (__real__ x < 0.0)
- {
- __real__ res = icls == FP_NAN ? __nanf ("") : 0;
- __imag__ res = __copysignf (HUGE_VALF, __imag__ x);
- }
- else
- {
- __real__ res = __real__ x;
- __imag__ res = (icls == FP_NAN
- ? __nanf ("") : __copysignf (0.0, __imag__ x));
- }
- }
- else
- {
- __real__ res = __nanf ("");
- __imag__ res = __nanf ("");
- }
- }
- else
- {
- if (__glibc_unlikely (icls == FP_ZERO))
- {
- if (__real__ x < 0.0)
- {
- __real__ res = 0.0;
- __imag__ res = __copysignf (__ieee754_sqrtf (-__real__ x),
- __imag__ x);
- }
- else
- {
- __real__ res = fabsf (__ieee754_sqrtf (__real__ x));
- __imag__ res = __copysignf (0.0, __imag__ x);
- }
- }
- else if (__glibc_unlikely (rcls == FP_ZERO))
- {
- float r;
- if (fabsf (__imag__ x) >= 2.0f * FLT_MIN)
- r = __ieee754_sqrtf (0.5f * fabsf (__imag__ x));
- else
- r = 0.5f * __ieee754_sqrtf (2.0f * fabsf (__imag__ x));
-
- __real__ res = r;
- __imag__ res = __copysignf (r, __imag__ x);
- }
- else
- {
- float d, r, s;
- int scale = 0;
-
- if (fabsf (__real__ x) > FLT_MAX / 4.0f)
- {
- scale = 1;
- __real__ x = __scalbnf (__real__ x, -2 * scale);
- __imag__ x = __scalbnf (__imag__ x, -2 * scale);
- }
- else if (fabsf (__imag__ x) > FLT_MAX / 4.0f)
- {
- scale = 1;
- if (fabsf (__real__ x) >= 4.0f * FLT_MIN)
- __real__ x = __scalbnf (__real__ x, -2 * scale);
- else
- __real__ x = 0.0f;
- __imag__ x = __scalbnf (__imag__ x, -2 * scale);
- }
- else if (fabsf (__real__ x) < 2.0f * FLT_MIN
- && fabsf (__imag__ x) < 2.0f * FLT_MIN)
- {
- scale = -((FLT_MANT_DIG + 1) / 2);
- __real__ x = __scalbnf (__real__ x, -2 * scale);
- __imag__ x = __scalbnf (__imag__ x, -2 * scale);
- }
-
- d = __ieee754_hypotf (__real__ x, __imag__ x);
- /* Use the identity 2 Re res Im res = Im x
- to avoid cancellation error in d +/- Re x. */
- if (__real__ x > 0)
- {
- r = __ieee754_sqrtf (0.5f * (d + __real__ x));
- if (scale == 1 && fabsf (__imag__ x) < 1.0f)
- {
- /* Avoid possible intermediate underflow. */
- s = __imag__ x / r;
- r = __scalbnf (r, scale);
- scale = 0;
- }
- else
- s = 0.5f * (__imag__ x / r);
- }
- else
- {
- s = __ieee754_sqrtf (0.5f * (d - __real__ x));
- if (scale == 1 && fabsf (__imag__ x) < 1.0f)
- {
- /* Avoid possible intermediate underflow. */
- r = fabsf (__imag__ x / s);
- s = __scalbnf (s, scale);
- scale = 0;
- }
- else
- r = fabsf (0.5f * (__imag__ x / s));
- }
-
- if (scale)
- {
- r = __scalbnf (r, scale);
- s = __scalbnf (s, scale);
- }
-
- math_check_force_underflow (r);
- math_check_force_underflow (s);
-
- __real__ res = r;
- __imag__ res = __copysignf (s, __imag__ x);
- }
- }
-
- return res;
-}
-#ifndef __csqrtf
-weak_alias (__csqrtf, csqrtf)
-#endif
diff --git a/math/s_csqrtl.c b/math/s_csqrtl.c
deleted file mode 100644
index b0b52a565c..0000000000
--- a/math/s_csqrtl.c
+++ /dev/null
@@ -1,161 +0,0 @@
-/* Complex square root of long double value.
- Copyright (C) 1997-2016 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
- Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
-
-#include <complex.h>
-#include <math.h>
-#include <math_private.h>
-#include <float.h>
-
-__complex__ long double
-__csqrtl (__complex__ long double x)
-{
- __complex__ long double res;
- int rcls = fpclassify (__real__ x);
- int icls = fpclassify (__imag__ x);
-
- if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
- {
- if (icls == FP_INFINITE)
- {
- __real__ res = HUGE_VALL;
- __imag__ res = __imag__ x;
- }
- else if (rcls == FP_INFINITE)
- {
- if (__real__ x < 0.0)
- {
- __real__ res = icls == FP_NAN ? __nanl ("") : 0;
- __imag__ res = __copysignl (HUGE_VALL, __imag__ x);
- }
- else
- {
- __real__ res = __real__ x;
- __imag__ res = (icls == FP_NAN
- ? __nanl ("") : __copysignl (0.0, __imag__ x));
- }
- }
- else
- {
- __real__ res = __nanl ("");
- __imag__ res = __nanl ("");
- }
- }
- else
- {
- if (__glibc_unlikely (icls == FP_ZERO))
- {
- if (__real__ x < 0.0)
- {
- __real__ res = 0.0;
- __imag__ res = __copysignl (__ieee754_sqrtl (-__real__ x),
- __imag__ x);
- }
- else
- {
- __real__ res = fabsl (__ieee754_sqrtl (__real__ x));
- __imag__ res = __copysignl (0.0, __imag__ x);
- }
- }
- else if (__glibc_unlikely (rcls == FP_ZERO))
- {
- long double r;
- if (fabsl (__imag__ x) >= 2.0L * LDBL_MIN)
- r = __ieee754_sqrtl (0.5L * fabsl (__imag__ x));
- else
- r = 0.5L * __ieee754_sqrtl (2.0L * fabsl (__imag__ x));
-
- __real__ res = r;
- __imag__ res = __copysignl (r, __imag__ x);
- }
- else
- {
- long double d, r, s;
- int scale = 0;
-
- if (fabsl (__real__ x) > LDBL_MAX / 4.0L)
- {
- scale = 1;
- __real__ x = __scalbnl (__real__ x, -2 * scale);
- __imag__ x = __scalbnl (__imag__ x, -2 * scale);
- }
- else if (fabsl (__imag__ x) > LDBL_MAX / 4.0L)
- {
- scale = 1;
- if (fabsl (__real__ x) >= 4.0L * LDBL_MIN)
- __real__ x = __scalbnl (__real__ x, -2 * scale);
- else
- __real__ x = 0.0L;
- __imag__ x = __scalbnl (__imag__ x, -2 * scale);
- }
- else if (fabsl (__real__ x) < 2.0L * LDBL_MIN
- && fabsl (__imag__ x) < 2.0L * LDBL_MIN)
- {
- scale = -((LDBL_MANT_DIG + 1) / 2);
- __real__ x = __scalbnl (__real__ x, -2 * scale);
- __imag__ x = __scalbnl (__imag__ x, -2 * scale);
- }
-
- d = __ieee754_hypotl (__real__ x, __imag__ x);
- /* Use the identity 2 Re res Im res = Im x
- to avoid cancellation error in d +/- Re x. */
- if (__real__ x > 0)
- {
- r = __ieee754_sqrtl (0.5L * (d + __real__ x));
- if (scale == 1 && fabsl (__imag__ x) < 1.0L)
- {
- /* Avoid possible intermediate underflow. */
- s = __imag__ x / r;
- r = __scalbnl (r, scale);
- scale = 0;
- }
- else
- s = 0.5L * (__imag__ x / r);
- }
- else
- {
- s = __ieee754_sqrtl (0.5L * (d - __real__ x));
- if (scale == 1 && fabsl (__imag__ x) < 1.0L)
- {
- /* Avoid possible intermediate underflow. */
- r = fabsl (__imag__ x / s);
- s = __scalbnl (s, scale);
- scale = 0;
- }
- else
- r = fabsl (0.5L * (__imag__ x / s));
- }
-
- if (scale)
- {
- r = __scalbnl (r, scale);
- s = __scalbnl (s, scale);
- }
-
- math_check_force_underflow (r);
- math_check_force_underflow (s);
-
- __real__ res = r;
- __imag__ res = __copysignl (s, __imag__ x);
- }
- }
-
- return res;
-}
-weak_alias (__csqrtl, csqrtl)