aboutsummaryrefslogtreecommitdiff
path: root/math/s_csqrt_template.c
diff options
context:
space:
mode:
authorPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-06-28 14:28:04 -0500
committerPaul E. Murphy <murphyp@linux.vnet.ibm.com>2016-08-29 12:43:38 -0500
commitfeb62ddacb7b1d772d7383de0228a3977f07fc1e (patch)
tree963280635eb242a98f191744c196d55fadc2550f /math/s_csqrt_template.c
parent1dbc54f61e281d3f2c1712dadd12864c42f8a64a (diff)
downloadglibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.gz
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.bz2
glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.zip
Convert remaining complex function to generated files
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions into generated templates. Note, ldbl-opt still retains s_clog10l.c as the aliasing rules are non-trivial.
Diffstat (limited to 'math/s_csqrt_template.c')
-rw-r--r--math/s_csqrt_template.c105
1 files changed, 52 insertions, 53 deletions
diff --git a/math/s_csqrt_template.c b/math/s_csqrt_template.c
index 1f073e7f17..22af083af7 100644
--- a/math/s_csqrt_template.c
+++ b/math/s_csqrt_template.c
@@ -1,4 +1,4 @@
-/* Complex square root of double value.
+/* Complex square root of a float type.
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
@@ -23,10 +23,10 @@
#include <math_private.h>
#include <float.h>
-__complex__ double
-__csqrt (__complex__ double x)
+CFLOAT
+M_DECL_FUNC (__csqrt) (CFLOAT x)
{
- __complex__ double res;
+ CFLOAT res;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
@@ -34,132 +34,131 @@ __csqrt (__complex__ double x)
{
if (icls == FP_INFINITE)
{
- __real__ res = HUGE_VAL;
+ __real__ res = M_HUGE_VAL;
__imag__ res = __imag__ x;
}
else if (rcls == FP_INFINITE)
{
- if (__real__ x < 0.0)
+ if (__real__ x < 0)
{
- __real__ res = icls == FP_NAN ? __nan ("") : 0;
- __imag__ res = __copysign (HUGE_VAL, __imag__ x);
+ __real__ res = icls == FP_NAN ? M_NAN : 0;
+ __imag__ res = M_COPYSIGN (M_HUGE_VAL, __imag__ x);
}
else
{
__real__ res = __real__ x;
__imag__ res = (icls == FP_NAN
- ? __nan ("") : __copysign (0.0, __imag__ x));
+ ? M_NAN : M_COPYSIGN (0, __imag__ x));
}
}
else
{
- __real__ res = __nan ("");
- __imag__ res = __nan ("");
+ __real__ res = M_NAN;
+ __imag__ res = M_NAN;
}
}
else
{
if (__glibc_unlikely (icls == FP_ZERO))
{
- if (__real__ x < 0.0)
+ if (__real__ x < 0)
{
- __real__ res = 0.0;
- __imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
- __imag__ x);
+ __real__ res = 0;
+ __imag__ res = M_COPYSIGN (M_SQRT (-__real__ x), __imag__ x);
}
else
{
- __real__ res = fabs (__ieee754_sqrt (__real__ x));
- __imag__ res = __copysign (0.0, __imag__ x);
+ __real__ res = M_FABS (M_SQRT (__real__ x));
+ __imag__ res = M_COPYSIGN (0, __imag__ x);
}
}
else if (__glibc_unlikely (rcls == FP_ZERO))
{
- double r;
- if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
- r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
+ FLOAT r;
+ if (M_FABS (__imag__ x) >= 2 * M_MIN)
+ r = M_SQRT (M_LIT (0.5) * M_FABS (__imag__ x));
else
- r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
+ r = M_LIT (0.5) * M_SQRT (2 * M_FABS (__imag__ x));
__real__ res = r;
- __imag__ res = __copysign (r, __imag__ x);
+ __imag__ res = M_COPYSIGN (r, __imag__ x);
}
else
{
- double d, r, s;
+ FLOAT d, r, s;
int scale = 0;
- if (fabs (__real__ x) > DBL_MAX / 4.0)
+ if (M_FABS (__real__ x) > M_MAX / 4)
{
scale = 1;
- __real__ x = __scalbn (__real__ x, -2 * scale);
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
+ __real__ x = M_SCALBN (__real__ x, -2 * scale);
+ __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
- else if (fabs (__imag__ x) > DBL_MAX / 4.0)
+ else if (M_FABS (__imag__ x) > M_MAX / 4)
{
scale = 1;
- if (fabs (__real__ x) >= 4.0 * DBL_MIN)
- __real__ x = __scalbn (__real__ x, -2 * scale);
+ if (M_FABS (__real__ x) >= 4 * M_MIN)
+ __real__ x = M_SCALBN (__real__ x, -2 * scale);
else
- __real__ x = 0.0;
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
+ __real__ x = 0;
+ __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
- else if (fabs (__real__ x) < 2.0 * DBL_MIN
- && fabs (__imag__ x) < 2.0 * DBL_MIN)
+ else if (M_FABS (__real__ x) < 2 * M_MIN
+ && M_FABS (__imag__ x) < 2 * M_MIN)
{
- scale = -((DBL_MANT_DIG + 1) / 2);
- __real__ x = __scalbn (__real__ x, -2 * scale);
- __imag__ x = __scalbn (__imag__ x, -2 * scale);
+ scale = -((M_MANT_DIG + 1) / 2);
+ __real__ x = M_SCALBN (__real__ x, -2 * scale);
+ __imag__ x = M_SCALBN (__imag__ x, -2 * scale);
}
- d = __ieee754_hypot (__real__ x, __imag__ x);
+ d = M_HYPOT (__real__ x, __imag__ x);
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (__real__ x > 0)
{
- r = __ieee754_sqrt (0.5 * (d + __real__ x));
- if (scale == 1 && fabs (__imag__ x) < 1.0)
+ r = M_SQRT (M_LIT (0.5) * (d + __real__ x));
+ if (scale == 1 && M_FABS (__imag__ x) < 1)
{
/* Avoid possible intermediate underflow. */
s = __imag__ x / r;
- r = __scalbn (r, scale);
+ r = M_SCALBN (r, scale);
scale = 0;
}
else
- s = 0.5 * (__imag__ x / r);
+ s = M_LIT (0.5) * (__imag__ x / r);
}
else
{
- s = __ieee754_sqrt (0.5 * (d - __real__ x));
- if (scale == 1 && fabs (__imag__ x) < 1.0)
+ s = M_SQRT (M_LIT (0.5) * (d - __real__ x));
+ if (scale == 1 && M_FABS (__imag__ x) < 1)
{
/* Avoid possible intermediate underflow. */
- r = fabs (__imag__ x / s);
- s = __scalbn (s, scale);
+ r = M_FABS (__imag__ x / s);
+ s = M_SCALBN (s, scale);
scale = 0;
}
else
- r = fabs (0.5 * (__imag__ x / s));
+ r = M_FABS (M_LIT (0.5) * (__imag__ x / s));
}
if (scale)
{
- r = __scalbn (r, scale);
- s = __scalbn (s, scale);
+ r = M_SCALBN (r, scale);
+ s = M_SCALBN (s, scale);
}
math_check_force_underflow (r);
math_check_force_underflow (s);
__real__ res = r;
- __imag__ res = __copysign (s, __imag__ x);
+ __imag__ res = M_COPYSIGN (s, __imag__ x);
}
}
return res;
}
-weak_alias (__csqrt, csqrt)
-#ifdef NO_LONG_DOUBLE
-strong_alias (__csqrt, __csqrtl)
-weak_alias (__csqrt, csqrtl)
+declare_mgen_alias (__csqrt, csqrt)
+
+#if M_LIBM_NEED_COMPAT (csqrt)
+declare_mgen_libm_compat (__csqrt, csqrt)
#endif